Skip to main content

Novel Integrated Membrane Auto-Thermal Reactors (NIMATRs) for Energy Efficiency and Sustainability

  • Living reference work entry
  • First Online:
Handbook of Smart Energy Systems

Abstract

Membrane-based reactive separation (membrane reactor) processes, which establish the theme of this book chapter, are an exceptional discussion of the wider field of membrane-based separation processes. The combination of Mixed Ionic Electronic Conducting (MIEC) membranes for the reactive separation for different components production via auto-thermal reforming reactions will be displayed in the present chapter. This chapter will address sustainability from the point of view of energy efficiency using novel reactors configuration to achieve auto-thermic by using NIMATRs for different kinds of Exothermic (Exo) and Endothermic (Endo) reactions as well as shifting the equilibrium reversibility constants for reversible Endo reactions giving rise to higher conversions through selective removal of one of the products, usually, hydrogen associated with Dehydrogenation (Dehyd) reactions, for example, catalytic Dehyd of Ethyl Benzene (EB) to Styrene (S) which will be usually coupled with a Hydrogenation (Hyd) reaction which is Exo and will provide its Exo heat to the EB to S side and using a hydrogen-selective membrane this EB to S side of the integrated reactor will provide hydrogen to the Hyd side, which can be Benzene (B) to Cyclo-Hexane (CH) or economically preferable is Nitro Benzene (NB) to Aniline (A). In this case, the walls between the two fixed bed catalytic reactors will be membranes selective to hydrogen and conducive to heat. The challenge in this design is the heat driving force from the Hyd side to the Dehyd side, while the driving force of hydrogen is not a big challenge because hydrogen is continuously produced in the Dehyd side and quickly consumed in the Hyd side. It is shown in this chapter that the best configuration for these reactions is the counter-current design which achieves Maximum Production and Minimum Pollution (MPMP), which is necessary for Sustainability but not sufficient because it does not use Renewable Raw Materials (RRMs). Research is needed to find routes for the required inputs of EB and NB from RRMs, and the structure will formulate a new Integrated Bio-Refinery (IBR). This will be explained in the chapter with the proposed research plan to achieve it. Other systems will be discussed including Exo and Endo reactions with conductive walls between the two reactors but without diffusion of products between them. Other Auto-thermal systems include the Reactor-Regenerator (RR) units; the most successful and famous of them is the Fluid-Catalytic Cracking (FCC) units in the petroleum industry for cracking Gas Oil to high Octane Number Gasoline. The different types of these units and their special operating characteristics will be discussed and also the RR configurations for other reactions. The very special type of membranes to be applied in the auto-thermal reactions will be an important part of the chapter, the preparation, and characterization of the membranes are demonstrated and discussed. In this chapter, we specifically concentrate our attention on the techno-economic appraisal of these novel engineering approaches using the new trends in chemical reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BZ:

Benzene

EB:

Ethylbenzene

H2 :

Hydrogen

Pmt :

Membrane tube total pressure

S:

Styrene

TOL:

Toluene

XEB :

Total conversion of ethylbenzene

YBZ :

Yield of benzene

YST :

Yield of Styrene

YTOL :

Yield of toluene

References

  • M.E.E. Abashar, Coupling of steam and dry reforming of methane in catalytic uidized bed membrane reactors. Int. J. Hydrog. Energy 29, 799–808 (2004)

    Article  Google Scholar 

  • M.E.E. Abashar, A.A. Al-Rabiah, Production of ethylene and cyclohexane in a catalytic membrane reactor. Chem. Eng. Process. 44, 1188–1196 (2005). https://doi.org/10.1016/j.cep.2005.02.004

    Article  Google Scholar 

  • B.K. Abdalla, S.S.E.H. Elnashaie, A membrane reactor for the production of styrene from ethylbenzene. J. Membr. Sci. 85, 229–239 (1993)

    Article  Google Scholar 

  • Z.A. Aboosadi, M.R. Rahimpour, A. Jahanmiri, A novel integrated thermally coupled configuration for methane-steam reforming and hydrogenation of nitrobenzene to aniline. Int. J. Hydrog. Energy 36, 2960–2968 (2011)

    Article  Google Scholar 

  • J.G. Akpa, Simulation of an isothermal catalytic membrane reactor for the dehydrogenation of ETHYLBENZENE. Chem. Process Eng. Res. 3, 14–28 (2012)

    Google Scholar 

  • A.K. Avci, D.L. Trimm, Z.I. Onsan, Heterogeneous reactor modeling for simulation of catalytic oxidation and steam reforming of methane. Chem. Eng. Sci. 56, 641–649 (2001)

    Article  Google Scholar 

  • C.H. Bartholomew, Chapter 5 recent developments in Fischer–Tropsch catalysis, in Studies in Surface Science and Catalysis, ed. by L. Guczi, (Elsevier, 1991), pp. 158–224. Netherlands, Dry ME. The Fischer–Tropsch process: 1950–2000. Catalysis Today 2002; 71:227

    Google Scholar 

  • W. Bauer, Can. J. Chem. Eng. 64, 561–566 (1986)

    Article  Google Scholar 

  • W. Bauer, K. Ostergaard, A. Sorensen (eds.), Fluidi- zation V (Engineering Foundation, New York, 1986), pp. 619–626

    Google Scholar 

  • M. Bayat, M.R. Rahimpour, Simultaneous utilization of two different membranes for intensification of ultrapure hydrogen production from recuperative coupling autothermal multitubular reactor. Int. J. Hydrog. Energy 36, 7310–7325 (2011)

    Article  Google Scholar 

  • S. Bezergianni, A. Dimitriadis, Comparison between different types of renewable diesel. Renew. Sust. Energ. Rev. 21, 110 (2013)

    Article  Google Scholar 

  • Y. Chen, H. Xu, X. Jin, G. Xiong, Integration of gasoline prereforming into autothermal reforming for hydrogen production. Catal. Today 116, 334–340 (2006)

    Article  Google Scholar 

  • F.M. Dautzenberg, M. Mukherjee, Process intensification using multifunctional reactors. Chem. Eng. Sci. 56, 251–267 (2001)

    Article  Google Scholar 

  • B. Davis, Fischer–Tropsch synthesis: Overview of reactor development and future potentialities. Top Catalysis 32, 143 (2005)

    Article  Google Scholar 

  • M. Doble, A.K. Kruthiventi, Process and operations. Green Chem. Eng. 105–170 (2007). https://doi.org/10.1016/b978-012372532-5/50007-9

  • M.E. Dry, The Fischer–Tropsch (FT) synthesis processes, in Handbook of Heterogeneous Catalysis, (Wiley-VCH Verlag GmbH & Co, 2008) Ertl, Knözinger, Schüth, Weitkamp, Germany., Velasco JA, Lopez L, Velásquez M, Boutonnet M, Cabrera S, Järås S. Gas to liquids: a technology for natural gas industrialization in Bolivia. J. Nat. Gas. Sci. Eng. 2010; 2:222

    Google Scholar 

  • J.A. Du Pisani, sustainable development – Historical roots of the concept, Environ. Sci., June 2006; 3(2): 83–96

    Google Scholar 

  • S.S. Elnashaie, The big picture. Chem. Engineer(tce) 803, 26–28 (2008)

    Google Scholar 

  • S.S.E. Elnashaie, Environmental engineering and sustainable development. Eur. J. Sustain. Dev. Res. 2(1), 11 (2018). https://doi.org/10.20897/ejosdr/75554

    Article  Google Scholar 

  • S.S.E.H. Elnashaie, S. Alzahrani, Digital simulation of industrial fluid catalytic cracking units-III. Effect of hydrodynamics. Chem. Eng. Sci. 47, 3152–3156 (1992)

    Article  Google Scholar 

  • S.S.E.H. Elnashaie, M.M.K. Fouad, S.S. Elshishini, The use of mathematical models to investigate the effect of chemisorption on the dynamic behaviour of catalytic reactors. Partial oxidation of o-xylene in fluidized beds. Math l Comput. Mod l. 13, 11–21 (1990)

    Article  Google Scholar 

  • S.S.E.H. Elnashaie, T. Moustafa, T. Alsoudani, S.S. Elshishini, Modeling and basic characteristics of novel integrated dehydrogenation-hydrogenation membrane catalytic reactors. Comput. Chem. Eng. 24, 1293–1300 (2000)

    Article  Google Scholar 

  • M. Farsi, M.H. Khademi, A. Jahanmiri, M.R. Rahimpour, Optimal conditions for hydrogen production from coupling of dimethyl ether and benzene synthesis. Int. J. Hydrog. Energy 36, 299–310 (2011)

    Article  Google Scholar 

  • J. Frauhammer, G. Eigenberger, L. von Hippel, D. Arntz, A new reactor concept for endothermic high-temperature reactions. Chem. Eng. Sci. 54, 3661–3670 (1999)

    Article  Google Scholar 

  • F. Gallucci, A. Basile, F.I. Hai, Introduction - a review of membrane reactors, in Membranes for Membrane Reactors: Preparation, Optimization and Selection, ed. by A. Basile, F. Gallucci, (Wiley, London, 2011), pp. 1–61

    Google Scholar 

  • M.M. Halmann, “Carbon Dioxide Reforming”. Chemical Fixation of Carbon Dioxide: Methods for Recycling CO2 into Useful Products (CRC Press, 1993)

    Google Scholar 

  • M. Hartman, K. Svoboda, M. Pohořelý, M. Šyc, M. JeremiáŠ, Attrition of dolomitic lime in a fluidized-bed reactor at high temperatures. Chem. Pap. 67, 164 (2013)

    Article  Google Scholar 

  • R.E. Hayes, B. Liu, M. Votsmeier, Calculating effectiveness factors in non-uniform washcoat shapes. Chem. Eng. Sci. 60, 2037–2050 (2005)

    Article  Google Scholar 

  • H.W.G. Heynen, Kinetics of the dehydrogenation of ethylbenzene over uranium oxide containing catalysts, DOI: 10.6100/IR82345

    Google Scholar 

  • D. Iranshahi, E. Pourazadi, A.M. Bahmanpour, M.R. Rahimpour, A comparison of two different flow types on performance of a thermally coupled recuperative reactor containing naphtha reforming process and hydrogenation of nitrobenzene. Int. J. Hydrog. Energy 36, 3483–3495 (2011)

    Article  Google Scholar 

  • Z.R. Ismagilov, V.V. Pushkarev, O.Y. Podyacheva, N.A. Koryabkina, H. Veringa, A catalytic heat-exchanging tubular reactor for combining of high temperature exothermic and endothermic reactions. Chem. Eng. J. 82, 355–360 (2001)

    Article  Google Scholar 

  • N. Itoh, Membrane Reactors for Energy Applications and Basic Chemical Production, Membrane Reactors for the Dehydrogenation of Alkanes to Alkenes (Elsevier Ltd. Utsunomiya University, Utsunomiya, 2015). https://doi.org/10.1016/B978-1-78242-223-5.00016-9

    Book  Google Scholar 

  • A. Iulianelli, P. Ribeirinha, A. Mendes, A. Basile, Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review. Renew. Sust. Energ. Rev. 29, 355 (2014)

    Article  Google Scholar 

  • A. Javaid, C.S. Bildea, Design and control of an integrated toluene-aniline production plant a preliminary study. Int. J. Chem. Eng. Appl. 8(4) (2017)

    Google Scholar 

  • H. Jiang, Z. Cao, S. Schirrmeister, T. Schiestel, J. Caro, A coupling strategy to produce hydrogen and ethylene in a membrane reactor. Angewandte Chemie-Int. Ed. 49, 5656–5660 (2010)

    Article  Google Scholar 

  • H. Jiang, H. Wang, S. Werth, T. Schiestel, J. Caro, Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor. Angewandte Chemie-Int. Ed. 47, 9341–9344 (2008)

    Article  Google Scholar 

  • J.H. Kim, O.C. Kwon, A micro reforming system integrated with a heat- recirculating micro-combustor to produce hydrogen from ammonia. Int. J. Hydrog. Energy 36, 1974–1983 (2011)

    Article  Google Scholar 

  • V.A. Kirillov, S.I. Fadeev, N.A. Kuzin, A.B. Shigarov, Modeling of a heat- coupled catalytic reactor with co-current oxidation and conversion flows. Chem. Eng. J. 134, 131–137 (2007)

    Article  Google Scholar 

  • G. Kolios, J. Frauhammer, G. Eigenberger, Autothermal fixed bed reactor concepts. Chem. Eng. Sci. 55, 5945 (2000)

    Article  Google Scholar 

  • O. Levenspiel, Chemical Reaction Engineering, 3rd edn. (Wiley, New York Chichester, Weinheim Brisbane Singapore, Toronto, 1999), pp. 497–498

    Google Scholar 

  • W.J. Lee, Ethylbenzene Dehydrogenation into Styrene: Kinetic Modeling and Reactor Simulation, Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of Doctor of Philosophy, December 2005

    Google Scholar 

  • R.C. Ramaswamy, P.A. Ramachandran, M.P. Dudukovic, Coupling exothermic and endothermic reactions in adiabatic reactors. Chem. Eng. Sci. 63, 1654–1667 (2008)

    Article  Google Scholar 

  • R. Vakili, E. Pourazadi, P. Setoodeh, R. Eslamloueyan, M.R. Rahimpour, Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor. Appl. Energy 88, 1211–1223 (2011)

    Article  Google Scholar 

  • M.R. Rahimpour, R. Vakili, E. Pourazadi, D. Iranshahi, K. Paymooni, A novel integrated, thermally coupled fluidized bed configuration for catalytic naphtha reforming to enhance aromatic and hydrogen productions in refineries. Int. J. Hydrog. Energy 36, 2979–2991 (2011a)

    Article  Google Scholar 

  • K. Venkataraman, J.M. Redenius, L.D. Schmidt, Millisecond catalytic wall reactors: Dehydrogenation of ethane. Chem. Eng. Sci. 57, 2335–2343 (2002)

    Article  Google Scholar 

  • Vaccaro and Malangone, J. Adv. Chem. Eng. 4, 2 (2014). https://doi.org/10.4172/2090-4568.1000107

    Article  Google Scholar 

  • F. Yin, S. Ji, H. Mei, Z. Zhou, C. Li, Coupling of highly exothermic and endothermic reactions in a metallic monolith catalyst reactor: A preliminary experimental study. Chem. Eng. J. 155, 285–291 (2009)

    Article  Google Scholar 

  • S. Vaccaro, L. Malangone, P. Ciambelli, Micro-scale catalytic reactor for syngas production. Ind. Eng. Chem. Res. 49, 10924–10933 (2010)

    Article  Google Scholar 

  • E.A. Polman, J.M. Der Kinderen, F.M.A. Thuis, Novel compact steam reformer for fuel cells with heat generation by catalytic combustion augmented by induction heating. Catal. Today 47, 347–351 (1999)

    Article  Google Scholar 

  • K. Venkataraman, E.C. Wanat, L.D. Schmidt, Steam reforming of methane and water-gas shift in catalytic wall reactors. AICHE J. 49, 1277–1284 (2003)

    Article  Google Scholar 

  • M.R. Rahimpour, E. Pourazadi, A comparison of hydrogen and methanol production in a thermally coupled membrane reactor for co-current and counter- current flows. Int. J. Energy Res. 35, 863–882 (2011)

    Article  Google Scholar 

  • M.H. Khademi, A. Jahanmiri, M.R. Rahimpour, A novel configuration for hydrogen production from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor. Int. J. Hydrog. Energy 34, 5091–5107 (2009)

    Article  Google Scholar 

  • M.R. Rahimpour, A. Mirvakili, K. Paymooni, Differential evolution (DE) strategy for optimization of hydrogen production and utilization in a thermally coupled membrane reactor for decalin dehydrogenation and Fischer-Tropsch synthesis in GTL technology. Int. J. Hydrog. Energy 36, 4917–4933 (2011b)

    Article  Google Scholar 

  • M.H. Khademi, M.R. Rahimpour, A. Jahanmiri, Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor. Int. J. Hydrog. Energy 35, 1936–1950 (2010)

    Article  Google Scholar 

  • N. Printedin, Ireland Adv. Appl. Prob. 15, 531–561 (1983)

    Article  Google Scholar 

  • G. Towler, S. Lynn, Novel applications of reaction coupling: Use of carbon dioxide to shift the equilibrium of dehydrogenation reactions. Chem. Eng. Sci. 16, 2585–2591 (1994)

    Article  Google Scholar 

  • S. Vaccaro, L. Malangone, Catalytic combustion for supplying energy for endothermic reaction. J. Adv. Chem. Eng. 4, 2 (2014). https://doi.org/10.4172/2090-4568.1000107

    Article  Google Scholar 

  • M. van Sint Annaland, A novel reverse flow reactor coupling endothermic and exothermic reactions. Martin van Sint Annaland geboren op 2 juni (1971)

    Google Scholar 

  • K. Tomishige, S. Kanazawa, S. Ito, K. Kunimori, Catalyst development for direct heat supply from combustion to reforming in methane reforming with CO2 and O-2. Appl. Catalysis a-General 244, 71–82 (2003)

    Article  Google Scholar 

  • K.H.P. Reddy, R. Rahul, S.S.V. Reddy, B.D. Raju, K.S.R. Rao, Coupling of 1,4-butanediol dehydrogenation reaction with the hydrogenation of nitrobenzene over Cu/MgO catalysts. Catal. Commun. 10, 879–883 (2009)

    Article  Google Scholar 

  • D. Zhang, H. Yin, R. Zhang, J. Xue, T. Jiang, Gas phase hydrogenation of maleic anhydride to gamma-butyrolactone by Cu-Zn-Ce catalyst in the presence of n-butanol. Catal. Lett. 122, 176–182 (2008)

    Article  Google Scholar 

  • L. Ma, D.L. Trimm, Alternative catalyst bed configurations for the autothermic conversion of methane to hydrogen. Appl. Catalysis a-General 138, 265–273 (1996)

    Article  Google Scholar 

  • X. Lu, Z. Qin, M. Dong, H. Zhu, G. Wang, et al., Selective oxidation of methanol to dimethoxymethane over acid-modified V2O5/TiO2 catalysts. Fuel 90, 1335–1339 (2011)

    Article  Google Scholar 

  • S.S. Ozdemir, M.G. Buonomenna, E. Drioli, Catalytic polymeric membranes: Preparation and application. Appl. Catal. A Gen. 307, 167–183 (2006)

    Article  Google Scholar 

  • Science and Engineering of Hydrogen-Based Energy Technologies. Doi/10.1016/B978-0-12-814251-6.00013-7 Copyright © 2019 Elsevier Inc.

    Google Scholar 

  • R.S. Sherbo, A. Kurimoto, C.M. Brown, C.P. Berlinguette, Efficient electrocatalytic hydrogenation with a palladium membrane reactor. J. Am. Chem. Soc. 141, 7815–7821 (2019). https://doi.org/10.1021/jacs.9b01442

    Article  Google Scholar 

  • W. Wei, W. Du, J. Xu, X. Bao, Study on a coupling reactor for catalytic partial oxidation of natural gas to syngas. Int. J. Chem. React. Eng. 9, 1–19 (2011)

    Google Scholar 

  • Wei, 1988; Amundson, 1988; Elnashaie et al., 1993; Vlachos et al., 1991; etc.

    Google Scholar 

  • T. Uragami, S. Chakraborty, V. Piemonte, L. Di Paola, Biocatalytic membrane reactors: Principles, preparation and biotechnological. Pharm. Med. Appl. (n.d.). https://doi.org/10.1533/9780857097347.4.846

  • A.P. Steynberg, R.L. Espinoza, B. Jager, A.C. Vosloo, High temperature Fischer–Tropsch synthesis in commercial practice. Appl Catalysis A Gen 186, 41 (1999)

    Article  Google Scholar 

  • S. Saeidi, M.T. Amiri, N.A.S. Amin, M.R. Rahimpour, Progress in reactors for high-temperature Fischer–Tropsch process: Determination place of intensifier reactor perspective. Int. J. Chem. React. Eng. 12(1), 639–664 (2014)

    Article  Google Scholar 

  • G. Wu, E. Cao, P. Ellis, A. Constantinou, S. Kuhn, A. Gavriilidis, Development of a flat membrane microchannel packed-bed reactor for scalable aerobic oxidation of benzyl alcohol in flow. Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2018.10.023

  • M.R. Rahimpour, A. Mirvakili, K. Paymooni, A novel water perm-selective membrane dual-type reactor concept for FischereTropsch synthesis of GTL (gas to liquid) technology. Energy 36, 1223–1235 (2011c)

    Article  Google Scholar 

  • J.G. Speight, Chapter 3 – Refining chemistry and fouling potential. https://doi.org/10.1016/B978-0-12-800777-8.00003-6

  • C. Song, Fuel processing for low-temperature and high-temperature fuel cells challenges, and opportunities for sustainable development in the 21st century. Catal. Today 77, 17–49 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Elnashaie, S.S.E.H., El Zanati, E. (2022). Novel Integrated Membrane Auto-Thermal Reactors (NIMATRs) for Energy Efficiency and Sustainability. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-72322-4_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72322-4_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72322-4

  • Online ISBN: 978-3-030-72322-4

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics