Skip to main content

Reasons for Seeking Information on the Molecular Structure and Dynamics of Circadian Clock Components in Cyanobacteria

  • Chapter
  • First Online:
Circadian Rhythms in Bacteria and Microbiomes

Abstract

We have used cyanobacterium Synechococcus elongatus PCC 7942 as the model system and looked for the slow but temperature-compensated reaction functioning as the pacemaker of in vivo rhythms. The key reaction we focused was the ATP hydrolysis as slow as 12 ATP d−1 in the N-terminal half of the clock protein KaiC. This intra-molecular-scale slowness comes from structural regulations of steric hindrance, water molecules, and cis-to-trans peptide isomerization in KaiC, being related on one-to-one correspondence not only to the frequency of inter-molecular-scale rhythm of KaiA/KaiB/KaiC oscillator, but also to the frequency of cellular-scale rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe J, Hiyama TB, Mukaiyama A, Son S, Mori T, Saito S, Osako M, Wolanin J, Yamashita E, Kondo T, Akiyama S (2015) Atomic-scale origins of slowness in the cyanobacterial circadian clock. Science 349:312–316

    Article  CAS  Google Scholar 

  • Akiyama S (2012) Structural and dynamic aspects of protein clocks: how can they be so slow and stable? Cell Mol Life Sci 69:2147–2160

    Article  CAS  Google Scholar 

  • Akiyama S, Nohara A, Ito K, Maeda Y (2008) Assembly and disassembly dynamics of the cyanobacterial periodosome. Mol Cell 29:703–716

    Article  CAS  Google Scholar 

  • Chang YG, Tseng R, Kuo NW, LiWang A (2012) Rhythmic ring–ring stacking drives the circadian oscillator clockwise. Proc Natl Acad Sci USA 109:16847–16851

    Article  CAS  Google Scholar 

  • Furuike Y, Abe J, Mukaiyama A, Akiyama S (2016) Accelerating in vitro studies on circadian clock systems using an automated sampling device. Biophys Physicobiol 13:235–241

    Article  CAS  Google Scholar 

  • Garces RG, Wu N, Gillon W, Pai EF (2004) Anabaena circadian clock proteins KaiA and KaiB reveal a potential common binding site to their partner KaiC. EMBO J 23:1688–1698

    Article  CAS  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523

    Article  CAS  Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68:2112–2116

    Article  CAS  Google Scholar 

  • Mukaiyama A, Osako M, Hikima T, Kondo T, Akiyama S (2015) A protocol for preparing nucleotide-free KaiC monomer. Biophysics 11:79–84

    Article  CAS  Google Scholar 

  • Mukaiyama A, Furuike Y, Abe J, Koda S, Yamashita E, Kondo T, Akiyama S (2018) Conformational rearrangements of the C1 ring in KaiC measure the timing of assembly with KaiB. Sci Rep 8:8803

    Article  Google Scholar 

  • Murayama Y, Mukaiyama A, Imai K, Onoue Y, Tsunoda A, Nohara A, Ishida T, MaĂ©da Y, Terauchi K, Kondo T, Akiyama S (2011) Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution. EMBO J 30:68–78

    Article  CAS  Google Scholar 

  • Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyarna T, Kondo T (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–415

    Article  CAS  Google Scholar 

  • Nishiwaki T, Kondo T (2012) Circadian autodephosphorylation of cyanobacterial clock protein KaiC occurs via formation of ATP as intermediate. J Biol Chem 287:18030–18035

    Article  CAS  Google Scholar 

  • Ouyang D, Furuike Y, Mukaiyama A, Ito-Miwa K, Kondo T, Akiyama S (2019) Development and optimization of expression, purification, and ATPase assay of KaiC for medium-throughput screening of circadian clock mutants in cyanobacteria. Int J Mol Sci 20:2789–2800

    Article  CAS  Google Scholar 

  • Partch CL (2020) Orchestration of circadian timing by macromolecular protein assemblies. J Mol Biol. https://doi.org/10.1016/j.jmb.2019.12.046

  • Pattanayek R, Wang JM, Mori T, Xu Y, Johnson CH, Egli M (2004) Visualizing a circadian clock protein: crystal structure of KaiC and functional insights. Mol Cell 15:375–388

    Article  CAS  Google Scholar 

  • Pattanayek R, Williams DR, Pattanayek S, Mori T, Johnson CH, Stewart PL, Egli M (2008) Structural model of the circadian clock KaiB–KaiC complex and mechanism for modulation of KaiC phosphorylation. EMBO J 27:1767–1778

    Article  CAS  Google Scholar 

  • Pattanayek R, Williams DR, Rossi G, Weigand S, Mori T, Johnson CH, Stewart PL, Egli M (2011) Combined SAXS/EM based models of the S. elongatus post-translational circadian oscillator and its interactions with the output His-kinase SasA. PLoS One 6:e23697

    Article  CAS  Google Scholar 

  • Pittendrigh CS (1993) Temporal organization – reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:16–54

    Article  CAS  Google Scholar 

  • Snijder J, Schuller JM, Wiegard A, Lössl P, Schmelling N, Axmann IM, Plitzko JM, Förster F, Heck AJR (2017) Structures of the cyanobacterial circadian oscillator frozen in a fully assembled state. Science 355:1181–1184

    Article  CAS  Google Scholar 

  • Swan JA, Golden S, LiWang A, Partch CL (2018) Structure, function, and mechanism of the core circadian clock in cyanobacteria. J Biol Chem 293:5026–5034

    Article  CAS  Google Scholar 

  • Terauchi K, Kitayama Y, Nishiwaki T, Miwa K, Murayama Y, Oyama T, Kondo T (2007) ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. Proc Natl Acad Sci USA 104:16377–16381

    Article  CAS  Google Scholar 

  • Tomita J, Nakajima M, Kondo T, Iwasaki H (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251–254

    Article  CAS  Google Scholar 

  • Tseng R, Goularte NF, Chavan A, Luu J, Cohen SE, Chang YG, Heisler J, Li S, Michael AK, Tripathi S, Golden SS, LiWang A, Partch CL (2017) Structural basis of the day-night transition in a bacterial circadian clock. Science 355:1174–1180

    Article  CAS  Google Scholar 

  • Vakonakis I, LiWang AC (2004) Structure of the C-terminal domain of the clock protein KaiA in complex with a KaiC-derived peptide: implications for KaiC regulation. Proc Natl Acad Sci USA 101:10925–10930

    Article  CAS  Google Scholar 

  • Ye S, Vakonakis I, Ioerger TR, LiWang AC, Sacchettini JC (2004) Crystal structure of circadian clock protein KaiA from Synechococcus elongatus. J Biol Chem 279:20511–20518

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Drs. T. Kondo (Graduate School of Science, Nagoya University, Japan), E. Yamashita (Institute for Protein Research, Osaka University, Japan), A. Mukaiyama, Y. Furuike, D. Ouyang, D. Simon, T. Mori, and S. Saito (Institute for Molecular Science, NINS, Japan) for their contributions to the study of the cyanobacterial circadian clock system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Akiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akiyama, S. (2021). Reasons for Seeking Information on the Molecular Structure and Dynamics of Circadian Clock Components in Cyanobacteria. In: Johnson, C.H., Rust, M.J. (eds) Circadian Rhythms in Bacteria and Microbiomes. Springer, Cham. https://doi.org/10.1007/978-3-030-72158-9_8

Download citation

Publish with us

Policies and ethics