Skip to main content

Insights into the Evolution of Circadian Clocks Gleaned from Bacteria

  • Chapter
  • First Online:
Circadian Rhythms in Bacteria and Microbiomes

Abstract

Circadian clocks are ubiquitous throughout the Tree of Life, being present in organisms from bacteria to mammals. These clocks are generally thought to increase the fitness of organisms by allowing the anticipation of and preparation for the predictable daily changes associated with Earth’s rotation. Here we consider what it takes to show that clocks indeed increase fitness and adaptiveness, as well as what bacteria can tell us about the evolution of clocks. We give a historical panorama of the experimental approaches that attempted to demonstrate the adaptive value of circadian clocks and explore current and future experiments that could facilitate an understanding of the adaptiveness of clocks in both intra- and interspecific contexts. Finally, we explain how studying bacteria can generate a greater appreciation and understanding for the general principles of the adaptive value of circadian clocks not only towards the daily cycle but also for the seasonal cycle, from both a past and future evolutionary perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Australian Government Bureau of Meteorology (2020) Special Climate Statement 73 – extreme heat and fire weather in December 2019 and January 2020, Australia

    Google Scholar 

  • Beale A, Guibal C, Tamai TK et al (2013) Circadian rhythms in Mexican blind cavefish Astyanax mexicanus in the lab and in the field. Nat Commun 4(1):1–10

    Article  CAS  Google Scholar 

  • Beer K, Joschinski J, Sastre A et al (2017) A damping circadian clock drives weak oscillations in metabolism and locomotor activity of aphids (Acyrthosiphon pisum). Sci Rep 7(1):1–9

    Article  CAS  Google Scholar 

  • Bolige A, Kiyota M, Goto K (2005) Circadian rhythms of resistance to UV-C and UV-B radiation in Euglena as related to ‘escape from light’ and ‘resistance to light’. J Photochem Photobiol B Biol 81(1):43–54

    Article  CAS  Google Scholar 

  • Coyte KZ, Rakoff-Nahoum S (2019) Understanding competition and cooperation within the mammalian gut microbiome. Curr Biol 29(11):R538–R544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daan S, Spoelstra K, Albrecht U et al (2011) Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J Biol Rhythm 26(2):118–129

    Article  Google Scholar 

  • Deaver JA, Eum SY, Toborek M (2018) Circadian disruption changes gut microbiome taxa and functional gene composition. Front Microbiol 9:737

    Article  PubMed  PubMed Central  Google Scholar 

  • DeCoursey PJ, Krulas JR (1998) Behavior of SCN-lesioned chipmunks in natural habitat: a pilot study. J Biol Rhythm 13(3):229–244

    Article  CAS  Google Scholar 

  • DeCoursey PJ, Walker JK, Smith SA (2000) A circadian pacemaker in free-living chipmunks: essential for survival? J Comp Physiol A 186(2):169–180

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Salathia N, Hall A et al (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309(5734):630–633

    Article  CAS  PubMed  Google Scholar 

  • Dvornyk V, Vinogradova O, Nevo E (2003) Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci 100(5):2495–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Edmunds LN Jr (1988) Cellular and molecular bases of biological clocks: models and mechanisms for circadian timekeeping. Springer, New York

    Google Scholar 

  • Eelderink-Chen Z, Mazzotta G, Sturre M et al (2010) A circadian clock in Saccharomyces cerevisiae. Proc Natl Acad Sci 107(5):2043–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Fenske MP, Nguyen LP, Horn EK et al (2018) Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Sci Rep 8(1):1–13

    Google Scholar 

  • Flombaum P, Gallegos JL, Gordillo RA et al (2013) Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci 110(24):9824–9829

    Google Scholar 

  • Fraker ME (2008) The influence of the circadian rhythm of green frog (Rana clamitans) tadpoles on their antipredator behavior and the strength of the nonlethal effects of predators. Am Nat 171(4):545–552

    Article  PubMed  Google Scholar 

  • Futuyma D, Kirkpatrick M (2017) Genetic drift: evolution at random. In: Evolution: Futuyma D and Kirkpatrick M evolution, 4th edn. Sinauer, Sunderland, pp 165–189

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond Ser B Biol Sci 205(1161):581–598

    CAS  Google Scholar 

  • Hasegawa K, Tanakadate A (1984) Circadian rhythm of locomotor behavior in a population of Paramecium multimicronucleatum: its characteristics as derived from circadian changes in the swimming speeds and the frequencies of avoiding response among individual cells. Photochem Photobiol 40:105–112

    Google Scholar 

  • Hasegawa K, Katakura T, Tanakadate A (1984) Circadian rhythm in the locomotor behavior in a population of Paramecium multimicronucleatum. Biol Rhythm Res 15(1):45–56

    Google Scholar 

  • Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden hamster. J Biol Rhythm 13(5):430–436

    Article  CAS  Google Scholar 

  • Hut RA, Beersma DG (2011) Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos Trans R Soc B Biol Sci 366(1574):2141–2154

    Article  CAS  Google Scholar 

  • Hut RA, Paolucci S, Dor R et al (2013) Latitudinal clines: an evolutionary view on biological rhythms. Proc R Soc B Biol Sci 280(1765):20130433

    Article  Google Scholar 

  • IPCC (2019) Summary for Policymakers. In Pörtner H-O, Roberts DC, Masson-Delmotte V, et al (eds) IPCC special report on the ocean and cryosphere in a changing climate

    Google Scholar 

  • Johnson CH, Zhao C, Xu Y et al (2017) Timing the day: what makes bacterial clocks tick? Nat Rev Microbiol 15(4):232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson ZI, Zinser ER, Coe A et al (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311(5768):1737–1740

    Google Scholar 

  • Ketellapper HJ (1960) Interaction of endogenous and environmental periods in plant growth. Plant Physiol 35(2):238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klarsfeld A, Rouyer F (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J Biol Rhythm 13(6):471–478

    Article  CAS  Google Scholar 

  • Kondratov RV, Kondratova AA, Gorbacheva VY et al (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20(14):1868–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert G, Chew J, Rust MJ (2016) Costs of clock-environment misalignment in individual cyanobacterial cells. Biophys J 111(4):883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SM, Donaldson GP, Mikulski Z et al (2013) Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501(7467):426–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenski RE (1988) Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42(3):425–432

    PubMed  Google Scholar 

  • Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci 91(15):6808–6814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenski RE, Rose MR, Simpson SC et al (1991) Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 138(6):1315–1341

    Article  Google Scholar 

  • Liang X, Bushman FD, FitzGerald GA (2015) Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci 112(33):10479–10484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Røder HL, Madsen JS et al (2016) Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization. Front Microbiol 7:1366

    Article  PubMed  PubMed Central  Google Scholar 

  • Loudon AS (2012) Circadian biology: a 2.5 billion year old clock. Curr Biol 22(14):R570–R571

    Article  CAS  PubMed  Google Scholar 

  • Ma P, Woelfle MA, Johnson CH (2013) An evolutionary fitness enhancement conferred by the circadian system in cyanobacteria. Chaos, Solitons Fractals 50:65–74

    Article  Google Scholar 

  • Mayor SJ, Guralnick RP, Tingley MW et al (2017) Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  • Mitsui A, Kumazawa S, Takahashi A et al (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323(6090):720–722

    Article  CAS  Google Scholar 

  • Nikaido SS, Johnson CH (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol 71(6):758–765

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell AJ, Schneider P, McWatters HG et al (2011) Fitness costs of disrupting circadian rhythms in malaria parasites. Proc R Soc B Biol Sci 278(1717):2429–2436

    Article  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T et al (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci 95(15):8660–8664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulose JK, Wright JM, Patel AG et al (2016) Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS One 11(1):e0146643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pittendrigh C S (1965) Biological clocks: The functions, ancient and modern, of circadian oscillations. In Science and the sixties, proceedings of the cloudcraft symposium, air force office of scientific research, pp 96–111

    Google Scholar 

  • Pittendrigh CS (1981a) Circadian systems: general perspective. In: Aschoff J (ed) Handbook of Behavioral Neurobiology, vol 4: Biological rhythms. Springer, Boston, pp 57–80

    Google Scholar 

  • Pittendrigh CS (1981b) Circadian systems: entrainment. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4: Biological rhythms. Springer, Boston, pp 57–80

    Google Scholar 

  • Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55(1):17–54

    Article  Google Scholar 

  • Pittendrigh CS, Minis DH (1972) Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc Natl Acad Sci 69(6):1537–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prior KF, O’Donnell AJ, Rund SS et al (2019) Host circadian rhythms are disrupted during malaria infection in parasite genotype-specific manners. Sci Rep 9(1):1–12

    Article  CAS  Google Scholar 

  • Rensing L, Meyer-Grahle U, Ruoff P (2001) Biological timing and the clock metaphor: oscillatory and hourglass mechanisms. Chronobiol Int 18(3):329–369

    Article  CAS  PubMed  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB et al (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Google Scholar 

  • Rijo-Ferreira F, Acosta-Rodriguez VA, Abel JH et al (2020) The malaria parasite has an intrinsic clock. Science 368(6492):746–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson JB, Davis CR, Johnson CH (2013) Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc Natl Acad Sci 110(52):21130–21135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubin EB, Shemesh Y, Cohen M et al (2006) Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res 16(11):1352–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutila JE, Suri V, Le M et al (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93(5):805–814

    Google Scholar 

  • Sartor F, Eelderink-Chen Z, Aronson B et al (2019) Are there circadian clocks in non-photosynthetic bacteria? Biology 8(2):41

    Article  CAS  PubMed Central  Google Scholar 

  • Sher D, Thompson JW, Kashtan N et al (2011) Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J 5(7):1125–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siede W, Friedberg EC (1990) Influence of DNA repair deficiencies on the UV sensitivity of yeast cells in different cell cycle stages. Mutat Res Lett 245(4):287–292

    Article  CAS  Google Scholar 

  • Simkovsky R, Daniels EF, Tang K et al (2012) Impairment of O-antigen production confers resistance to grazing in a model amoeba–cyanobacterium predator–prey system. Proc Natl Acad Sci 109(41):16678–16683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simkovsky R, Effner EE, Iglesias-Sánchez MJ et al (2016) Mutations in novel lipopolysaccharide biogenesis genes confer resistance to amoebal grazing in Synechococcus elongatus. Appl Environ Microbiol 82(9):2738–2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons MJ (2009) The evolution of the cyanobacterial posttranslational clock from a primitive “phoscillator”. J Biol Rhythm 24(3):175–182

    Article  CAS  Google Scholar 

  • Sippel S, Meinshausen N, Fischer EM et al (2020) Climate change now detectable from any single day of weather at global scale. Nat Clim Chang 10(1):35–41

    Article  Google Scholar 

  • Smith RM, Williams SB (2006) Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci 103(22):8564–8569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somanath PR, Podrez EA, Chen J et al (2011) Deficiency in core circadian protein Bmal1 is associated with a prothrombotic and vascular phenotype. J Cell Physiol 226(1):132–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoelstra K, Wikelski M, Daan S et al (2016) Natural selection against a circadian clock gene mutation in mice. Proc Natl Acad Sci 113(3):686–691

    Article  CAS  PubMed  Google Scholar 

  • Summa KC, Voigt RM, Forsyth CB et al (2013) Disruption of the circadian clock in mice increases intestinal permeability and promotes alcohol-induced hepatic pathology and inflammation. PLoS One 8(6):e67102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tei H, Okamura H, Shigeyoshi Y et al (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389(6650):512–516

    Article  CAS  PubMed  Google Scholar 

  • Thaiss CA, Zeevi D, Levy M et al (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159(3):514–529

    Article  CAS  PubMed  Google Scholar 

  • Troein C, Locke JC, Turner MS et al (2009) Weather and seasons together demand complex biological clocks. Curr Biol 19(22):1961–1964

    Article  CAS  PubMed  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  • Visser ME, Noordwijk AV, Tinbergen JM et al (1998) Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc R Soc Lond Ser B Biol Sci 265(1408):1867–1870

    Article  Google Scholar 

  • Voigt RM, Forsyth CB, Green SJ et al (2014) Circadian disorganization alters intestinal microbiota. PLoS One 9(5):e97500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voigt RM, Summa KC, Forsyth CB et al (2016) The circadian clock mutation promotes intestinal dysbiosis. Alcohol Clin Exp Res 40(2):335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Saint Paul U, Aschoff J (1978) Longevity among blowflies Phormia terraenovae R.D. kept in non-24-hour light-dark cycles. J Comp Physiol 127(3):191–195

    Google Scholar 

  • Woelfle MA, Ouyang Y, Phanvijhitsiri K et al (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14(16):1481–1486

    Article  CAS  PubMed  Google Scholar 

  • Zarrinpar A, Chaix A, Yooseph S et al (2014) Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 20(6):1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Sauman I, Yuan Q et al (2008) Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol 6(1):e4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We dedicate this chapter to the memory of Dr. David McCauley, who generously advised and assisted us in our early analyses and experiments on adaptive fitness tests in cyanobacteria. Research on cyanobacteria in our laboratory has primarily been supported by grants from the National Institutes of Health (NIGMS GM067152 and GM107434). Finally, we thank other members of our laboratory and our collaborators for helpful discussions and emotional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Hirschie Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jabbur, M.L., Zhao, C., Johnson, C.H. (2021). Insights into the Evolution of Circadian Clocks Gleaned from Bacteria. In: Johnson, C.H., Rust, M.J. (eds) Circadian Rhythms in Bacteria and Microbiomes. Springer, Cham. https://doi.org/10.1007/978-3-030-72158-9_7

Download citation

Publish with us

Policies and ethics