Skip to main content

The Bacterial Perspective on Circadian Clocks

  • Chapter
  • First Online:
Circadian Rhythms in Bacteria and Microbiomes

Abstract

Prokaryotes were long thought to be incapable of expressing circadian (daily) rhythms. Research on nitrogen-fixing cyanobacteria in the 1980s squashed that dogma and showed that these bacteria could fulfill the criteria for circadian rhythmicity. Development of a luminescence reporter strain of Synechococcus elongatus PCC 7942 established a model system that ultimately led to the best characterized circadian clockwork at a molecular level. The conclusion of this chapter lists references to the seminal discoveries that have come from the study of cyanobacterial circadian clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe J, Hiyama TB, Mukaiyama A et al (2015) Atomic-scale origins of slowness in the cyanobacterial circadian clock. Science 349:312–316

    Article  CAS  PubMed  Google Scholar 

  • Andersson CR, Tsinoremas NF, Shelton J et al (2000) Application of bioluminescence to the study of circadian rhythms in cyanobacteria. Methods Enzymol 305:527–542

    Article  CAS  PubMed  Google Scholar 

  • Aoki S, Kondo T, Ishiura M (1995) Circadian expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 177:5606–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YG, Cohen SE, Phong C et al (2015) A protein fold switch joins the circadian oscillator to clock output in cyanobacteria. Science 349:324–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T-H, Chen T-L, Hung L-M et al (1991) Circadian rhythm in amino acid uptake by Synechococcus RF-1. Plant Physiol 97:55–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond S, Rubin BE, Shultzaberger RK et al (2017) Redox crisis underlies conditional light–dark lethality in cyanobacterial mutants that lack the circadian regulator, RpaA. Proc Natl Acad Sci USA 114:E580–E589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong G, Yang Q, Wang Q et al (2010) Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus. Cell 140:529–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlap JC, Loros JJ, PJ DC (eds) (2004) Chronobiology: biological timekeeping. Sinauer, Sunderland, MA. 406 p

    Google Scholar 

  • Dvornyk V, Vinogradova O, Nevo E (2003) Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci USA 100:2495–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eelderink-Chen Z, Bosman J, Sartor F et al (2021) A circadian clock in a nonphotosynthetic prokaryote. Sci Adv 7:eabe2086

    Google Scholar 

  • Egli M, Mori T, Pattanayek R et al (2012) Dephosphorylation of the core clock protein KaiC in the cyanobacterial KaiABC circadian oscillator proceeds via an ATP synthase mechanism. Biochemistry 51:1547–1558

    Article  CAS  PubMed  Google Scholar 

  • Ehret CF, Trucco E (1967) Molecular models for the circadian clock. I. The chronon concept. J Theor Biol 15:240–262

    Article  CAS  PubMed  Google Scholar 

  • Ehret CF, Wille JJ (1970) The photobiology of circadian rhythms in protozoa and other eukaryotic microorganisms. In: Halldal P (ed) Photobiology of microorganisms, Chap 13. Wiley, New York, pp 369–416

    Google Scholar 

  • Gallon JR (1992) Reconciling the incompatible: N2 fixation and O2. New Phytol 122:571–609

    Article  CAS  Google Scholar 

  • Garces RG, Wu N, Gillon W et al (2004) Anabaena circadian clock proteins KaiA and KaiB reveal a potential common binding site to their partner KaiC. EMBO J 23:1688–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grobbelaar N, Huang T-C, Lin HY et al (1986) Dinitrogen-fixing endogenous rhythm Synechococcus RF-1. FEMS Microbiol Lett 37:173–177

    Article  CAS  Google Scholar 

  • Grobbelaar N, Lin H-Y, Huang TC (1987) Induction of a nitrogenase activity rhythm in Synechococcus and the protection of its nitrogenase against photosynthetic oxygen. Curr Microbiol 15:29–33

    Article  CAS  Google Scholar 

  • Halberg F, Conner RL (1961) Circadian organization and microbiology: variance spectra and a periodogram on behavior of Escherichia coli growing in fluid culture. Proc Minnesota Acad Sci 29:227–239

    Google Scholar 

  • Hall JC, Rosbash M (1993) Oscillating molecules and how they move circadian clocks across evolutionary boundaries. Proc Natl Acad Sci USA 90:5382–5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama TS, Kaneko K (2012) Generic temperature compensation of biological clocks by autonomous regulation of catalyst concentration. Proc Natl Acad Sci USA 109:8109–8114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellweger F, Jabbur ML, Johnson CH et al (2020) Circadian clock helps cyanobacteria manage energy in coastal and high latitude ocean. ISME J 14:560–568

    Article  PubMed  Google Scholar 

  • Hitomi K, Oyama T, Han S et al (2005) Tetrameric architecture of the circadian clock protein KaiB: a novel interface for intermolecular interactions and its impact on the circadian rhythm. J Biol Chem 280:18643–18650

    Article  CAS  Google Scholar 

  • Huang T-C, Grobbelaar N (1995) The circadian clock in the prokaryote Synechococcus RF-1. Microbiology 141:535–540

    Article  CAS  Google Scholar 

  • Huang T-C, Tu J, Chow T-J et al (1990) Circadian rhythm of the prokaryote Synechococcus sp. RF-1. Plant Physiol 92:531–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S et al (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Kageyama H, Mutsuda M et al (2007) Autonomous synchronization of the circadian KaiC phosphorylation rhythm. Nat Struct Mol Biol 14:1084–1088

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Mutsuda M, Murayama Y et al (2009) Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. Proc Natl Acad Sci USA 106:14168–14173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki H, Taniguchi Y, Ishiura M et al (1999) Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteria. EMBO J 18:1137–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki H, Williams SB, Kitayama Y et al (2000) A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101:223–233

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki H, Nishiwaki T, Kitayama Y et al (2002) KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria. Proc Natl Acad Sci USA 99:15788–15793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabbur ML, Zhao C, Johnson CH (2021) Insights into the evolution of circadian clocks gleaned from bacteria. In: Johnson CH, Rust M (eds) Circadian rhythms in bacteria and microbiomes. Springer, Cham

    Google Scholar 

  • Johnson CH (2010) Circadian clocks and cell division: what’s the pacemaker? Cell Cycle 9:3864–3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CH, Xu Y (2009) The decade of discovery: how Synechococcus elongatus became a model circadian system 1990–2000. In: Ditty JL, Mackey SR, Johnson CH (eds) Bacterial circadian programs, Chap 4. Springer, Berlin, pp 63–86

    Google Scholar 

  • Johnson CH, Golden SS, Ishiura M et al (1996) Circadian clocks in prokaryotes. Mol Microbiol 21:5–11

    Article  CAS  PubMed  Google Scholar 

  • Johnson CH, Egli M, Stewart PL (2008) Structural insights into a circadian oscillator. Science 322:697–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CH, Zhao C, Xu Y et al (2017) Timing the day: what makes bacterial clocks tick? Nat Rev Microbiol 15:232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama H, Nishiwaki T, Nakajima M et al (2006) Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro. Mol Cell 23:161–171

    Article  CAS  PubMed  Google Scholar 

  • Kim YI, Vinyard DJ, Ananyev GM et al (2012) Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator. Proc Natl Acad Sci USA 109:17765–17769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kippert F (1986) Endocytobiotic coordination, intracellular calcium signalling, and the origin of endogenous rhythms. In: Lee & Frederick (eds), Endocytobiology III. Ann NY Acad Sci 503:476–495

    Article  Google Scholar 

  • Kippert F (1991) Essential clock proteins/circadian rhythms in prokaryotes; what is the evidence? Bot Acta 104:2–4

    Article  CAS  Google Scholar 

  • Kitayama Y, Nishiwaki T, Terauchi K et al (2008) Dual KaiC-based oscillations constitute the circadian system of cyanobacteria. Genes Dev 22:1513–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitayama Y, Nishiwaki-Ohkawa T, Sugisawa Y et al (2013) KaiC intersubunit communication facilitates robustness of circadian rhythms in cyanobacteria. Nat Commun 4:2897

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Ishiura M (1994) Circadian rhythms of cyanobacteria: monitoring the biological clocks of individual colonies by bioluminescence. J Bacteriol 176:1881–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Strayer CA, Kulkarni RD et al (1993) Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc Natl Acad Sci USA 90:5672–5676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Golden SS, Johnson CH et al (1994) Circadian clock mutants of cyanobacteria. Science 266:1233–1236

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Mori T, Lebedeva NV et al (1997) Circadian rhythms in rapidly dividing cyanobacteria. Science 275:224–227

    Article  CAS  PubMed  Google Scholar 

  • Kucho K, Okamoto K, Tsuchiya Y et al (2005) Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 187:2190–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushige H, Kugenuma H, Matsuoka M et al (2013) Genome-wide and heterocyst-specific circadian gene expression in the filamentous cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 195:1276–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert G, Chew J, Rust MJ (2016) Costs of clock-environment misalignment in individual cyanobacterial cells. Biophys J 111:883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leone V, Gibbons SM, Martinez K et al (2015) Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17:681–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Golden SS, Kondo T et al (1995a) Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria. J Bacteriol 177:2080–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tsinoremas NF, Johnson CH et al (1995b) Circadian orchestration of gene expression in cyanobacteria. Genes Devel 9:1469–1478

    Article  CAS  PubMed  Google Scholar 

  • Ma P, Mori T, Zhao C et al (2016) Evolution of KaiC-dependent timekeepers: a proto-circadian timing mechanism confers adaptive fitness in the purple bacterium Rhodopseudomonas palustris. PLoS Genet 12:e1005922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makarova KS, Galperin MY, Koonin EV (2017) Proposed role for KaiC-like ATPases as major signal transduction hubs in Archaea. mBio 8:e01959–e01917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markson JS, Piechura JR, Puszynska AM et al (2013) Circadian control of global gene expression by the cyanobacterial master regulator RpaA. Cell 155:1396–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihalcescu I, Hsing W, Leibler S (2004) Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430:81–85

    Article  CAS  PubMed  Google Scholar 

  • Min H, Guo H, Xiong J (2005) Rhythmic gene expression in a purple photosynthetic bacterium, Rhodobacter sphaeroides. FEBS Lett 579:808–812

    Article  CAS  PubMed  Google Scholar 

  • Mitsui A, Kumazawa S, Takahashi A et al (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323:720–722

    Article  CAS  Google Scholar 

  • Monod J (1966) From enzymatic adaptation to allosteric transitions. Science 154:475–483

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Johnson CH (2001) Independence of circadian timing from cell division in cyanobacteria. J Bacteriol 183:2439–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori T, Binder B, Johnson CH (1996) Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc Natl Acad Sci USA 93:10183–10188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori T, Saveliev SV, Xu Y et al (2002) Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA. Proc Natl Acad Sci USA 99:17203–17208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori T, Williams DR, Byrne M et al (2007) Elucidating the ticking of an in vitro circadian clockwork. PLoS Biol 5:e93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mori T, Sugiyama S, Byrne M et al (2018) Revealing circadian mechanisms of integration and resilience by visualizing clock proteins working in real time. Nat Commun 9:3245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murayama Y, Kori H, Oshima C et al (2017) Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation. Proc Natl Acad Sci USA 114:5641–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima M, Imai K, Ito H et al (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–415

    Article  CAS  PubMed  Google Scholar 

  • Nishiwaki T, Kondo T (2012) Circadian autodephosphorylation of cyanobacterial clock protein KaiC occurs via formation of ATP as intermediate. J Biol Chem 287:18030–18035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiwaki T, Iwasaki H, Ishiura M et al (2000) Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. Proc Natl Acad Sci USA 97:495–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiwaki T, Satomi Y, Kitayama Y et al (2007) A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. EMBO J 26:4029–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onai K, Morishita M, Itoh S et al (2004) Circadian rhythms in the thermophilic cyanobacterium Thermosynechococcus elongatus: compensation of period length over a wide temperature range. J Bacteriol 186:4972–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T et al (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paijmans J, Lubensky DK, ten Wolde PR (2017) A thermodynamically consistent model of the post-translational Kai circadian clock. PLoS Comput Biol 13:e1005415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pattanayak GK, Lambert G, Bernat K et al (2015) Controlling the cyanobacterial clock by synthetically rewiring metabolism. Cell Rep 13:2362–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattanayek R, Wang J, Mori T et al (2004) Visualizing a circadian clock protein: crystal structure of KaiC and functional insights. Mol Cell 15:375–388

    Article  CAS  PubMed  Google Scholar 

  • Paulose JK, Wright JM, Patel AG et al (2016) Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS One 11:e0146643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pittendrigh CS (1965) Biological clocks: the functions, ancient and modern, of circadian oscillations. In: Science and the sixties, Proceedings of the Cloudcraft symposium. Air Force Office of Scientific Research, pp 96–111

    Google Scholar 

  • Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:17–54

    Article  Google Scholar 

  • Puszynska AM, O’Shea EK (2017) Switching of metabolic programs in response to light availability is an essential function of the cyanobacterial circadian output pathway. eLife 6:e23210

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin X, Byrne M, Xu Y et al (2010a) Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system. PLoS Biol 8:e1000394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin X, Byrne M, Mori T et al (2010b) Intermolecular associations determine the dynamics of the circadian KaiABC oscillator. Proc Natl Acad Sci USA 107:14805–14810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson JB, Davis CR, Johnson CH (2013) Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc Natl Acad Sci USA 110:21130–21135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers LA, Greenbank GR (1930) The intermittent growth of bacterial cultures. J Bacteriol 19:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rust MJ, Markson JS, Lane WS et al (2007) Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318:809–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rust MJ, Golden SS, O’Shea EK (2011) Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331:220–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Baracaldo P, Raven JA, Pisani D et al (2017) Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci USA 114:E7737–E7745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sartor F, Eelderink-Chen Z, Aronson B et al (2019) Are there circadian clocks in non-photosynthetic bacteria? Biology (Basel) 8:41

    CAS  Google Scholar 

  • Schmelling NM, Lehmann R, Chaudhury P et al (2017) Minimal tool set for a prokaryotic circadian clock. BMC Evol Biol 17:1–20

    Article  CAS  Google Scholar 

  • Schmitz O, Katayama M, Williams SB et al (2000) CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289:765–768

    Article  CAS  PubMed  Google Scholar 

  • Schneegurt MA, Sherman DM, Nayar S et al (1994) Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 176:1586–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweiger H-G, Schweiger M (1977) Circadian rhythms in unicellular organisms: an endeavor to explain the molecular mechanism. Int Rev Cytol 51:315–342

    Article  CAS  PubMed  Google Scholar 

  • Schweiger H-G, Schweiger M (1980) Molecular mechanisms of cellular circadian clocks. Eur J Cell Biol 21:335–336

    Google Scholar 

  • Smith RM, Williams SB (2006) Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci USA 103:8564–8569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snijder J, Schuller JM, Wiegard A et al (2017) Structures of the cyanobacterial circadian oscillator frozen in a fully assembled state. Science 355:1181–1184

    Article  CAS  PubMed  Google Scholar 

  • Stal LJ, Krumbein WE (1985) Nitrogenase activity in the non-heterocystous cyanobacterium Oscillatoria sp. grown under alternating light-dark cycles. Arch Microbiol 143:67–71

    Article  CAS  Google Scholar 

  • Sturtevant RP (1973) Circadian variability in Klebsiella demonstrated by cosinor analysis. Int J Chronobiol 1:141–146

    CAS  PubMed  Google Scholar 

  • Sweeney BM, Borgese MB (1989) A circadian rhythm in cell division in a prokaryote, the cyanobacterium Synechococcus WH7803. J Phycol 25:183–186

    Article  Google Scholar 

  • Takai N, Nakajima M, Oyama T et al (2006) A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc Natl Acad Sci USA 103:12109–12114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi Y, Takai N, Katayama M et al (2010) Three major output pathways from the KaiABC-based oscillator cooperate to generate robust circadian kaiBC expression in cyanobacteria. Proc Natl Acad Sci USA 107:3263–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor WR (1979) Studies on the bioluminescent glow rhythm of Gonyaulax polyedra. Ph.D. dissertation, University of Michigan, Chap 5, pp 78–110

    Google Scholar 

  • Teng SW, Mukherji S, Moffitt JR et al (2013) Robust circadian oscillations in growing cyanobacteria require transcriptional feedback. Science 340:737–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terauchi K, Kitayama Y, Nishiwaki T et al (2007) ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. Proc Natl Acad Sci USA 104:16377–16381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaiss CA, Zeevi D, Levy M et al (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:514–529

    Article  CAS  PubMed  Google Scholar 

  • Tomita J, Nakajima M, Kondo T et al (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251–254

    Article  CAS  PubMed  Google Scholar 

  • Tseng R, Goularte NF, Chavan A et al (2017) Structural basis of the day-night transition in a bacterial circadian clock. Science 355:1174–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vakonakis I, LiWang AC (2004) Structure of the C-terminal domain of the clock protein KaiA in complex with a KaiC-derived peptide: implications for KaiC regulation. Proc Natl Acad Sci USA 101:10925–10930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Zon JS, Lubensky DK, Altena PR et al (2007) An allosteric model of circadian KaiC phosphorylation. Proc Natl Acad Sci USA 104:7420–7425

    Article  PubMed  PubMed Central  Google Scholar 

  • Vijayan V, Zuzow R, O’Shea EK (2009) Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc Natl Acad Sci USA 106:22564–22568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt RM, Forsyth CB, Green SJ et al (2014) Circadian disorganization alters intestinal microbiota. PLoS One 9:e97500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woelfle M, Ouyang Y, Phanvijhitsiri K et al (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481–1486

    Article  CAS  PubMed  Google Scholar 

  • Woelfle MA, Xu Y, Qin X et al (2007) Circadian rhythms of superhelical status of DNA in cyanobacteria. Proc Natl Acad Sci USA 104:18819–18824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Piston D, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci USA 96:151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Mori T, Johnson CH (2000) Circadian clock-protein expression in cyanobacteria: rhythms and phase-setting. EMBO J 19:3349–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Mori T, Johnson CH (2003) Cyanobacterial circadian clockwork: roles of KaiA, KaiB, and the kaiBC promoter in regulating KaiC. EMBO J 22:2117–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Mori T, Pattanayek R et al (2004) Identification of key phosphorylation sites in the circadian clock protein KaiC by crystallographic and mutagenetic analyses. Proc Natl Acad Sci USA 101:13933–13938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Ma P, Shah P et al (2013a) Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature 495:116–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Weyman PD, Umetani M et al (2013b) Circadian Yin-Yang regulation and its manipulation to globally reprogram gene expression. Curr Biol 23:2365–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye S, Vakonakis I, Ioerger TR et al (2004) Crystal structure of circadian clock protein KaiA from Synechococcus elongatus. J Biol Chem 279:20511–20518

    Article  CAS  PubMed  Google Scholar 

  • Zwicker D, Lubensky DK, ten Wolde PR (2010) Robust circadian clocks from coupled protein-modification and transcription–translation cycles. Proc Natl Acad Sci USA 107:22540–22545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Mr. Ian Dew for his artwork in Fig. 1. Research in Dr. Johnson’s laboratory is supported by the USA NIH/NIGMS (GM 067152 and GM 107434), and in Dr. Rust’s laboratory by NIH/NIGMS (GM 107369) and an HHMI-Simons Faculty Scholar award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Hirschie Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, C.H., Rust, M.J. (2021). The Bacterial Perspective on Circadian Clocks. In: Johnson, C.H., Rust, M.J. (eds) Circadian Rhythms in Bacteria and Microbiomes. Springer, Cham. https://doi.org/10.1007/978-3-030-72158-9_1

Download citation

Publish with us

Policies and ethics