Skip to main content

Performance Creativity in Computer Systems for Expressive Performance of Music

  • Chapter
  • First Online:
Handbook of Artificial Intelligence for Music

Abstract

This chapter presents a detailed example of expressive music performance that focuses on performance creativity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anders, T. (2007). Composing music by composing rules: Design and usage of a generic music constraint system. Ph.D. Thesis, University of Belfast.

    Google Scholar 

  2. Arcos, J. L., de Mantaras, R. L., & Serra, X. (1997). SaxEx: A case-based reasoning system for generating expressive musical performances. In P. R. Cook (Ed.), Proceedings of 1997 International Computer Music Conference, Thessalonikia, Greece, September 1997, ICMA, San Francisco, CA (pp. 329–336).

    Google Scholar 

  3. Arcos, J. L., de Mantaras, R. L., & Serra, X. (1998). Saxex: A case-based reasoning system for generating expressive musical performance. Journal of New Music Research, 27, 194–210.

    Google Scholar 

  4. Arcos, J. L., & de Mantaras, R. L. (2001). The SaxEx system for expressive music synthesis: A progress report. In C. Lomeli & R. Loureiro (Eds.), Proceedings of the Workshop on Current Research Directions in Computer Music, Barcelona, Spain, November 2001 (pp. 17–22).

    Google Scholar 

  5. Arcos, J. L., & Lopez de Mantaras, R. (2001). An interactive case-based reasoning approach for generating expressive music. Journal of Applied Intelligence, 14, 115–129.

    Google Scholar 

  6. Atkinson, J. (2007). J.S. Bach: The Goldberg variations. Stereophile, September 2007

    Google Scholar 

  7. Bellini, P., & Nesi, P. (2001). WEDELMUSIC format: An XML music notation format for emerging applications. In Proceedings of First International Conference on Web Delivering of Music, Florence, November 2001 (pp. 79–86). Los Alamitos, CA: IEEE Press.

    Google Scholar 

  8. Ben-David, A., & Mandel, J. (1995). Classification accuracy: Machine learning vs. explicit knowledge acquisition. Machine Learning, 18, 109–114

    Google Scholar 

  9. Boyd, R., & Richardson, P. J. (2005). Solving the puzzle of human cooperation. In S. Levinson (Ed.), Evolution and culture. (pp. 105–132). Cambridge MA: MIT Press.

    Google Scholar 

  10. Bresin, R., & Friberg, A. (2000). Emotional coloring of computer-controlled music performances. Computer Music Journal, 24, 44–63

    Article  Google Scholar 

  11. Bresin, R. (1998). Artificial neural networks based models for automatic performance of musical scores. Journal of New Music Research, 27, 239–270.

    Google Scholar 

  12. Buxton, W. A. S. (1977). A composers introduction to computer music. Interface, 6, 57–72.

    Google Scholar 

  13. Cambouropoulos, E. (2001). The Local Boundary Detection Model (LBDM) and its application in the study of expressive timing. In R. Schloss & R. Dannenberg (Eds.), Proceedings of the 2001 International Computer Music Conference, Havana, Cuba, September 2001. San Fransisco, CA: International Computer Music Association.

    Google Scholar 

  14. Camurri, A., Dillon, R., & Saron, A. (2000). An experiment on analysis and synthesis of musical expressivity. In Proceedings of 13th Colloquium on Musical Informatics, L'Aquila, Italy, September 2000.

    Google Scholar 

  15. Canazza, S., Drioli, C., de Poli, G., Rodà, A., & Vidolin, A. (2000). Audio morphing different expressive intentions for multimedia systems. IEEE Multimedia, 7, 79–83

    Google Scholar 

  16. Canazza, S., de Poli, G., Drioli, C., Rodà, A., & Vidolin, A. (2004). Modeling and control of expressiveness in music performance. The Proceedings of the IEEE, 92, 686–701

    Article  Google Scholar 

  17. Canazza, S., de Poli, G., Rodà, A., & Vidolin, A. (2003). An abstract control space for communication of sensory expressive intentions in music performance. Journal of New Music Research, 32, 281–294

    Article  Google Scholar 

  18. Cancino-Chacon, C. E., Grachten, M., Goebl, W., & Widmer, G. (2018). Computational models of expressive music performance: A comprehensive and critical review. Frontiers in Digital Humanities, 5, 25

    Google Scholar 

  19. Carlson, L., Nordmark, A., & Wiklander, R. (2003). Reason version 2.5—Getting started. Propellorhead Software.

    Google Scholar 

  20. Chalmers, D. (2006). Strong and weak emergence. In P. Clayton & P. Davies (Eds.), The re-emergence of emergence. Oxford: Oxford University Press.

    Google Scholar 

  21. Church, M. (2004). The mystery of Glenn Gould. The Independent.

    Google Scholar 

  22. Clarke, E. F., & Davidson, J. W. (1998). The body in music as mediator between knowledge and action. In W. Thomas (Ed.), Composition, s. (pp. 74–92). Oxford: Oxford University Press.

    Google Scholar 

  23. Clarke, E. F., & Windsor, W. L. (2000). Real and simulated expression: A listening study. Music Perception, 17, 277–313

    Article  Google Scholar 

  24. Clarke, E. F. (1998). The semiotics of expression in musical performance. Contemporary Music Review, 17(2), 87–102.

    Google Scholar 

  25. Clarke, E. F. (1988). Generative principles in music performance. In J. A. Sloboda (Ed.), Generative processes in music: The psychology of performance, improvisation, and composition (pp. 1–26). Oxford: Clarendon Press.

    Google Scholar 

  26. Clynes, M. (1986). Generative principles of musical thought: Integration of microstructure with structure. Communication and Cognition, 3, 185–223.

    Google Scholar 

  27. Dahlstedt, P. (2007). Autonomous evolution of complete Piano pieces and performances. In Proceedings of ECAL 2007 Workshop on Music and Artificial Life (MusicAL 2007), Lisbon, Portugal, September 2007.

    Google Scholar 

  28. Dannenberg, R. B., & Derenyi, I. (1998). Combining instrument and performance models for high-quality music synthesis. Journal of New Music Research, 27, 211–238

    Article  Google Scholar 

  29. Dannenberg, R. B. (1993). A brief survey of music representation issues, techniques, and systems. Computer Music Journal, 17, 20–30.

    Google Scholar 

  30. Dannenberg, R. B., Pellerin, H., & Derenyi, I. (1998). A study of trumpet envelopes. In Proceedings of the 1998 International Computer Music Conference, Ann Arbor, Michigan, October 1998 (pp. 57–61). San Francisco: International Computer Music Association.

    Google Scholar 

  31. Desain, P., & Honing, H. (1993). Tempo curves considered harmful. Contemporary Music Review, 7, 123–138

    Article  Google Scholar 

  32. Dissanayake, E. (2001). Birth of the arts. Natural History, 109, 84–92.

    Google Scholar 

  33. Dixon, S., Goebl, W., & Widmer, G. (2002, September). The performance worm: Real time visualisation of expression based on Langner's tempo-loudness animation. In ICMC.

    Google Scholar 

  34. Dobrev, D. (2005). Formal definition of artificial intelligence. International Journal ITA, 12.

    Google Scholar 

  35. Dorard, L., Hardoon, D. R., & Shawe-Taylor, J. (2007). Can style be learned? A machine learning approach towards ‘performing’ as famous pianists. In Music, Brain and Cognition Workshop, NIPS 2007, Whistler, Canada.

    Google Scholar 

  36. Emde, W., & Wettschereck, D. (1996). Relational instance based learning. In L. Saitta (Ed.), Proceedings of 13th International Conference on Machine Learning, Bari, Italy, July 1996 (pp. 122–130). Morgan Kaufmann.

    Google Scholar 

  37. Finn, B. (2007). Personal Communication. August 2007.

    Google Scholar 

  38. Friberg, A., Bresin, R., & Sundberg, J. (2006). Overview of the KTH rule system for musical performance. Advances in Cognitive Psychology, 2, 145–161

    Article  Google Scholar 

  39. Friberg, A., & Sundberg, J. (1999). Does music performance allude to locomotion? A model of final ritardandi derived from measurements of stopping runners. Journal of Acoustical Society of America, 105, 1469–1484

    Article  Google Scholar 

  40. Friberg, A. (1995). A quantitative rule system for music performance. Ph.D. Thesis, Department of Speech, Music and Hearing, Royal Institute of Technology, Stockholm.

    Google Scholar 

  41. Friberg, A. (2006). pDM: An expressive sequencer with real-time control of the KTH music-performance rules. Computer Music Journal, 30, 37–48.

    Google Scholar 

  42. Gabrielsson, A., & Juslin, P. (1996). Emotional expression in music performance: Between the performer’s intention and the listener’s experience. Psychology of Music, 24, 68–91

    Article  Google Scholar 

  43. Gabrielsson, A. (2003). Music performance research at the millenium. Psychology of Music, 31, 221–272.

    Google Scholar 

  44. Giraldo, S. I., & Ramirez, R. (2016). A machine learning approach to discover rules for expressive performance actions in jazz guitar music. Frontiers in psychology, 7, 1965.

    Google Scholar 

  45. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Essex: Addison-Wesley.

    Google Scholar 

  46. Good, M. (2001). MusicXML for notation and analysis. In W. B. Hewlett & E. Selfridge-Field (Eds.), The virtual score: Representation, retrieval, restoration (pp. 113–124). Cambridge, MA: MIT Press.

    Google Scholar 

  47. Good, M. (2006). MusicXML in commercial applications. In In W. B. Hewlett & E. Selfridge-Field (Eds.), Music analysis east and west (pp. 9–20). Cambridge, MA: MIT Press.

    Google Scholar 

  48. Grindlay, G. C. (2005). Modelling expressive musical performance with Hidden Markov Models. Ph.D. Thesis, University of Santa Cruz, CA.

    Google Scholar 

  49. Hashida, M., Nagata, N., & Katayose, H. (2006). Pop-E: A performance rendering system for the ensemble music that considered group expression. In M. Baroni, R. Addessi, R. Caterina, & M. Costa (Eds.), Proceedings of 9th International Conference on Music Perception and Cognition, Bologna, Spain, August 2006 (pp. 526–534). ICMPC.

    Google Scholar 

  50. Hashida, M., Nagata, N., & Katayose, H. (2007). jPop-E: An assistant system for performance rendering of ensemble music. In L. Crawford (Ed.), Proceedings of 2007 Conference on New Interfaces for Musical Expression (NIME07) (pp. 313–316).

    Google Scholar 

  51. Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. Springer.

    Google Scholar 

  52. Hazan, A., & Ramirez, R. (2006). Modelling expressive performance using consistent evolutionary regression trees. In G. Brewka, S. Coradeschi, A. Perini, & P. Traverso (Eds.), Proceedings of 17th European European Conference on Aritifial Intelligence (Workshop on Evolutionary Computation), Riva del Garda, Italy, August 2006. IOS Press.

    Google Scholar 

  53. Hellman, M. (1991). The nearest neighbor classification rule with a reject option. In B. Dasarathy (Ed.), Nearest Neighbor (NN) Norms: Pattern Classification Techniques. IEEE Computer Society Press.

    Google Scholar 

  54. Hiller, L., & Isaacson, L. (1959). Experimental music. Composition with an electronic computer. New York: McGraw Hill.

    Google Scholar 

  55. Hirata, K., & Hiraga, R. (2002). Ha-Hi-Hun: Performance rendering system of high controllability. In Proceedings of the ICAD 2002 Rencon Workshop on Performance Rendering Systems, Kyoto, Japan, July 2002 (pp. 40–46).

    Google Scholar 

  56. Ishikawa, O., Aono, Y., Katayose, H., & Inokuchi, S. (2000). Extraction of musical performance rule using a modified algorithm of multiple regression analysis. In Proceedings of the International Computer Music Conference, Berlin, Germany, August 2000 (pp. 348–351). International Computer Music Association.

    Google Scholar 

  57. Johnson, M. L. (1991). Toward an expert system for expressive musical performance. Computer, 24, 30–34.

    Google Scholar 

  58. Juslin, P. (2003). Five facets of musical expression: A psychologist's perspective on music performance. Psychology of Music, 31, 273–302.

    Google Scholar 

  59. Kajanova, Y. (2002). Johann Sebastian Bach and the modern Jazz quartet—A desire for sonic sensualism or seriousness. In J. Fukac (Ed.), Bach 2000, Music Between Virgin Forest and Knowledge Society (pp. 253–260). Compostela Group of Universities.

    Google Scholar 

  60. Katayose, H., Fukuoka, T., Takami, K., & Inokuchi, S. (1990). Expression extraction in virtuoso music performances. In Proceedings of the 10th International Conference on Pattern Recognition, Atlantic City, New Jersey, USA, June 1990 (pp. 780–784). IEEE Press.

    Google Scholar 

  61. Kirke, A., & Miranda, E. (2015). A multi-agent emotional society whose melodies represent its emergent social hierarchy and are generated by agent communications. Journal of Artificial Societies and Social Simulation, 18(2), 16

    Article  Google Scholar 

  62. Kirke, A. (1997). Learning and co-operation in mobile multi-robot systems. Ph.D. Thesis, University of Plymouth.

    Google Scholar 

  63. Kirke, A., & Miranda, E. R. (2009). Using a biophysically-constrained multi-agent system to combine expressive performance with algorithmic composition. In E. R. Miranda (Ed.), Music and artificial life. Middleton, WI: A-R Editions.

    Google Scholar 

  64. Kirke, A. (2011). Application of intermediate multi-agent systems to integrated algorithmic composition and expressive performance of music. Ph.D Thesis, University of Plymouth, Plymouth, UK.

    Google Scholar 

  65. Kroiss, W. (2000). Parameteroptimierung für ein Modell des musikalischen Ausdrucks mittels Genetischer Algorithmen. Master’s thesis, Department of Medical Cybernetics and Artificial Intelligence, University of Vienna, Vienna, Austria.

    Google Scholar 

  66. Krumhans, C. (1991). Cognitive foundations of musical pitch. Oxford: Oxford University Press.

    Google Scholar 

  67. Laurson, M., & Kuuskankare, M. (2003). From RTM-notation to ENP-score-notation. In Proceedings of Journées d'Informatique Musicale 2003, Montbéliard, France.

    Google Scholar 

  68. Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge: The MIT Press.

    Google Scholar 

  69. Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady, 10, 707–710.

    Google Scholar 

  70. Livingstone, S. R., Muhlberger, R., Brown, A. R., & Loch, A. (2007). Controlling musical emotionality: An affective computational architecture for influencing musical emotions. Digital Creativity, 18.

    Google Scholar 

  71. Lopez de Mantaras, R., & Arcos, J. L. (2002). AI and music: From composition to expressive performances. AI Magazine, 23, 43–57.

    Google Scholar 

  72. Mazzola, G., & Zahorka, O. (1994). Tempo curves revisited: Hierarchies of performance fields. Computer Music Journal, 18(1).

    Google Scholar 

  73. Mazzola, G. (2002). The topos of music—Geometric logic of concepts, theory, and performance. Basel/Boston: Birkhäuser.

    Google Scholar 

  74. Meyer, L. B. (1957). Meaning in music and information theory. Journal of Aesthetics and Art Criticism, 15, 412–424.

    Google Scholar 

  75. Miranda, E. R., & Biles, J. A. (2007). Evolutionary computer music. London: Springer.

    Book  Google Scholar 

  76. Miranda, E. R., Kirke, A., & Zhang, Q. (2010). Artificial evolution of expressive performance of music: An imitative multi-agent systems approach. Computer Music Journal, 34, 80–96

    Article  Google Scholar 

  77. Miranda, E. R. (2001). Composing music with computers. Oxford, UK: Focal Press.

    Google Scholar 

  78. Miranda, E. R. (2002). Emergent sound repertoires in virtual societies. Computer Music Journal, 26(2), 77–90.

    Google Scholar 

  79. Mitchell, M. (1998). Introduction to genetic algorithms. Cambridge: The MIT Press.

    Google Scholar 

  80. Mitchell, T. (1997). Machine learning. New York: McGraw-Hill.

    Google Scholar 

  81. Narmour, E. (1990). The analysis and cognition of basic melodic structures: The implication-realization model. Chicago: The University of Chicago Press.

    Google Scholar 

  82. Noble, J., & Franks, D. W. (2004). Social learning in a multi-agent system. Computing and Informatics, 22(6), 561–574

    MATH  Google Scholar 

  83. Pace, I. (2007). Complexity as imaginative stimulant: Issues of Rubato, Barring, Grouping, Accentuation and Articulation in Contemporary Music, with Examples from Boulez, Carter, Feldman, Kagel, Sciarrino, Finnissy. In Proceedings of the 5th International Orpheus Academy for Music & Theory, Gent, Belgium, April 2007.

    Google Scholar 

  84. Palmer, C. (1997). Music performance. Annual Review of Psychology, 48, 115–138.

    Google Scholar 

  85. Papadopoulos, G., & Wiggins, G. A. (1999). AI methods for algorithmic composition: A survey, a critical view, and future prospects. In Proceedings of the AISB'99 Symposium on Musical Creativity, AISB.

    Google Scholar 

  86. Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann.

    Google Scholar 

  87. Ramirez, R., Hazan, A., Maestre, E., & Serra, X. (2008). A genetic rule-based model of expressive performance for Jazz saxophone. Computer Music Journal, 32(1), 38–50

    Article  Google Scholar 

  88. Ramirez, R., & Hazan, A. (2005). Modeling expressive performance in Jazz. In Proceedings of 18th International Florida ArtificiaI Intelligence Research Society Conference (AI in Music and Art), Clearwater Beach, FL, USA, May 2005 (pp. 86–91). AAAI Press.

    Google Scholar 

  89. Ramirez, R., & Hazan, A. (2007). Inducing a generative expressive performance model using a sequential-covering genetic algorithm. In Proceedings of 2007 Genetic and Evolutionary Computation Conference, London, UK, July 2007. ACM Press.

    Google Scholar 

  90. Raphael, C. (2001a). Can the computer learn to play music expressively? In T. Jaakkola & T. Richardson (Eds.), Proceedings of Eighth International Workshop on Artificial Intelligence and Statistics, 2001 (pp. 113–120). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  91. Raphael, C. (2001b). A Bayesian network for real-time musical accompaniment. Neural Information Processing Systems, 14.

    Google Scholar 

  92. Raphael, C. (2003). Orchestra in a box: A system for real-time musical accompaniment. In G. Gottlob & T. Walsh (Eds.), Proceedings of 2003 International Joint Conference on Artificial Intelligence (Working Notes of RenCon Workshop), Acapulco, Mexico, August 2003 (pp. 5–10). Morgan Kaufmann.

    Google Scholar 

  93. Rasmussen, C., & Williams, C. (2006). Gaussian processes for machine learning. Massachusetts: The MIT Press.

    MATH  Google Scholar 

  94. Repp, B. H. (1990). Composer's pulses: Science or art. Music Perception, 7, 423–434.

    Google Scholar 

  95. Roads, C. (1996). The computer music tutorial. Cambridge, Massachusetts, USA: MIT Press.

    Google Scholar 

  96. Seashore, C. E. (1938). Psychology of music. New York: McGraw-Hill.

    Google Scholar 

  97. Sethares, W. (2004). Tuning, timbre, spectrum, scale. London: Springer.

    Google Scholar 

  98. Shi, Z., Cancino-Chacon, C., & Widmer, G. (2019). User curated shaping of expressive performances. arXiv preprint. arXiv:1906.06428.

  99. Sholkopf, B., Smola, A., & Muller, K. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299–1319. Cambridge, Massachusetts, USA: IT Press.

    Google Scholar 

  100. Strickland, E. (2016). Artistic expression, individuality and authenticity in Chopin performance. Ph.D. Thesis, University of Oregon (Doctoral dissertation, University of Oregon).

    Google Scholar 

  101. Sundberg, J., Askenfelt, A., & Frydén, L. (1983). Musical performance a synthesis-by-rule approach. Computer Music Journal, 7, 37–43

    Article  Google Scholar 

  102. Sundberg, J., Friberg, A., & Bresin, R. (2003). Attempts to reproduce a pianist’s expressive timing with Director Musices performance rules. Journal of New Music Research, 32, 317–325

    Article  Google Scholar 

  103. Suzuki, T., Tokunaga, T., & Tanaka, H. (1999). A case based approach to the generation of musical expression. In Proceedings of the 16th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, August 1999 (pp. 642–648). San Francisco, CA, USA: Morgan Kaufmann.

    Google Scholar 

  104. Suzuki, T. (2003). Kagurame phase-II. In G. Gottlob & T. Walsh (Eds.), Proceedings of 2003 International Joint Conference on Artificial Intelligence (Working Notes of RenCon Workshop), Acapulco, Mexico, August 2003. Los Altos, CA: Morgan Kauffman.

    Google Scholar 

  105. Thomassen, J. M. (1982). Melodic accent: Experiments and a tentative model. Journal of the Acoustical Society of America, 71(6), 1596–1605.

    Google Scholar 

  106. Thompson, W. F. (1989). Composer-specific aspects of musical performance: An evaluation of Clynes's theory of pulse for performances of Mozart and Beethoven. Music Perception, 7, 15–42.

    Google Scholar 

  107. Tobudic, A., & Widmer, G. (2003a). Relational IBL in music with a new structural similarity measure. In T. Horváth & A. Yamamoto (Eds.), Proceedings of the 13th International Conference on Inductive Logic Programming, Szeged, Hungary, September 2003 (pp. 365–382). Berlin: Springer.

    Google Scholar 

  108. Tobudic, A., & Widmer, G. (2003b). Learning to play Mozart: Recent improvements. In K. Hirata (Ed.), Proceedings of the IJCAI'03 Workshop on Methods for Automatic Music Performance and their Applications in a Public Rendering Contest (RenCon), Acapulco, Mexico, August 2003.

    Google Scholar 

  109. Todd, N. P. (1985). A model of expressive timing in tonal music. Music Perception, 3, 33–58.

    Google Scholar 

  110. Todd, N. P. (1989). A computational model of Rubato. Contemporary Music Review, 3, 69–88.

    Google Scholar 

  111. Todd, N. P. (1992). The dynamics of dynamics: a model of musical expression. Journal of the Acoustical Society of America, 91, 3540–3550.

    Google Scholar 

  112. Todd, N. P. (1995). The kinematics of musical expression. Journal of Acoustical Society of America, 97, 1940–1949.

    Google Scholar 

  113. Toop, R. (1988). Four facets of the new complexity. Contact, 32, 4–50.

    Google Scholar 

  114. Widmer, G., & Goebl, W. (2004). Computational models of expressive music performance: The state of the art. Journal of New Music Research, 33, 203–216

    Article  Google Scholar 

  115. Widmer, G., & Tobudic, A. (2003). Playing Mozart by analogy: Learning multi-level timing and dynamics strategies. Journal of New Music Research, 32, 259–268

    Article  Google Scholar 

  116. Widmer, G. (2000). Large-scale induction of expressive performance rules: first quantitative results. In I. Zannos (Ed.), Proceedings of the 2000 International Computer Music Conference, Berlin, Germany, September 2000 (pp. 344–347). San Francisco, CA: International Computer Music Association.

    Google Scholar 

  117. Widmer, G. (2002). Machine discoveries: A few simple, robust local expression principles. Journal of New Music Research, 31, 37–50.

    Google Scholar 

  118. Widmer, G. (2003). Discovering simple rules in complex data: A meta-learning algorithm and some surprising musical discoveries. Artificial Intelligence, 146, 129–148.

    Google Scholar 

  119. Winston, W. L., & Venkataramanan, M. (2002). Introduction to mathematical programming: Applications and algorithms. Duxbury.

    Google Scholar 

  120. Witten, I. H., & Frank, E. (2000). Data mining: Practical machine learning tools and techniques with java implementations. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  121. Wooldridge, M. (2004). An introduction to multi-agent systems. Wiley.

    Google Scholar 

  122. Wright, M., & Berdahl, E. (2006). Towards machine learning of expressive microtiming in Brazilian drumming. In I. Zannos (Ed.), Proceedings of the 2006 International Computer Music Conference, New Orleans, USA, November 2006 (pp. 572–575). San Fransisco, CA: ICMA.

    Google Scholar 

  123. Zanon, P., & de Poli, G. (2003). Estimation of parameters in rule system for expressive rendering of musical performance. Computer Music Journal, 27, 29–46

    Article  Google Scholar 

  124. Zanon, P., & de Poli, G. (2003). Time-varying estimation of parameters in rule systems for music performance. Journal of New Music Research, 32, 295–315.

    Article  Google Scholar 

  125. Zentall, T., & Galef, B. G. (1988). Social learning: Psychological and biological perspectives. Erlbaum.

    Google Scholar 

  126. Zhang, Q., & Miranda, E. R. (2006a). Evolving musical performance profiles using genetic algorithms with structural fitness. In J. V. Diggelen, M. A. Wiering, & E. D. D. Jong (Eds.), Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Washington, July 2006 (pp. 1833–1840). New York, USA: ACM Press.

    Google Scholar 

  127. Zhang, Q., & Miranda, E. R. (2006b). Towards an interaction and evolution model of expressive music performance. In Y. Chen & A. Abraham (Eds.), Proceedings of the 6th International conference on Intelligent Systems Design and Applications, Jinan, China, October 2006 (pp. 1189–1194). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Reck Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirke, A., Miranda, E.R. (2021). Performance Creativity in Computer Systems for Expressive Performance of Music. In: Miranda, E.R. (eds) Handbook of Artificial Intelligence for Music. Springer, Cham. https://doi.org/10.1007/978-3-030-72116-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72116-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72115-2

  • Online ISBN: 978-3-030-72116-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics