Skip to main content

DSMER: A Deep Semantic Matching Based Framework for Named Entity Recognition

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12656))

Included in the following conference series:

  • 2308 Accesses

Abstract

The task of named entitiy recognition(NER) is normally regarded as a sequence labeling problem. However, this kind of NER framework does not utilize any prior knowledge. In this paper, we propose a novel framework called DSMER, which stands for Deep Semantic Matching based Framework for Named Entity Recognition. DSMER is a two-phase framework: 1) detect the boundary and extract candidate span, 2) calculate the distance between candidates and entity type. Meanwhile, the representation of each entity type is encoded from its corresponding annotation rules and example set. Since the combination of various textual data, DSMER has the ability to integrate informative prior knowledge. Additionally, we introduce the Word Mover’s Distance to measure the similarity between sequences of different lengths. We conduct experiments on CoNLL 2003 and OntoNotes 5.0 dataset. Experimental result shows our approach achieve state of the art performance, and demonstrates the effectiveness of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/fastnlp/fastNLP.

References

  1. Chiu, J.P., Nichols, E.: Named entity recognition with Bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist. 4, 357–370 (2016). https://www.aclweb.org/anthology/Q16-1026

  2. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (Jun 2019). 10.18653/v1/N19-1423. https://www.aclweb.org/anthology/N19-1423

  4. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision - ECCV 2016, pp. 630–645. Springer International Publishing, Cham, Lecture Notes in Computer Science (2016)

    Chapter  Google Scholar 

  5. Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM international conference on Information & Knowledge Management, pp. 2333–2338. CIKM 2013, Association for Computing Machinery, New York, NY, USA, October 2013. https://doi.org/10.1145/2505515.2505665

  6. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF Models for Sequence Tagging. arXiv:1508.01991, August 2015. arXiv: 1508.01991

  7. Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings To document distances. In: International Conference on Machine Learning, pp. 957–966, June 2015. http://proceedings.mlr.press/v37/kusnerb15.html

  8. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 282–289. ICML 2001. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, June 2001

    Google Scholar 

  9. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 260–270. Association for Computational Linguistics, San Diego, California, June 2016. https://doi.org/10.18653/v1/N16-1030,https://www.aclweb.org/anthology/N16-1030

  10. Lee, K.J., Hwang, Y.S., Rim, H.C.: Two-phase biomedical NE recognition based on SVMs. In: Proceedings of the ACL 2003 Workshop on Natural Language Processing in Biomedicine, pp. 33–40. Association for Computational Linguistics, Sapporo, Japan, July 2003. https://doi.org/10.3115/1118958.1118963, https://www.aclweb.org/anthology/W03-1305

  11. Li, X., Feng, J., Meng, Y., Han, Q., Wu, F., Li, J.: A unified MRC framework for named entity recognition. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5849–5859. Association for Computational Linguistics, July 2020. https://doi.org/10.18653/v1/2020.acl-main.519,https://www.aclweb.org/anthology/2020.acl-main.519

  12. Ma, X., Hovy, E.: End-to-end sequence labeling via Bi-directional LSTM-CNNs-CRF. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1064–1074. Association for Computational Linguistics, Berlin, Germany, August 2016. https://doi.org/10.18653/v1/P16-1101,https://www.aclweb.org/anthology/P16-1101

  13. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris (1781)

    Google Scholar 

  14. Palangi, H., et al.: Semantic Modelling with Long-Short-Term Memory for Information Retrieval. arXiv:1412.6629, Feburary 2015. http://arxiv.org/abs/1412.6629, arXiv: 1412.6629

  15. Peleg, S., Werman, M., Rom, H.: A unified approach to the change of resolution: space and gray-level. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 739–742 (1989). https://doi.org/10.1109/34.192468, conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence

  16. Peters, M., et al.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2227–2237. Association for Computational Linguistics, New Orleans, Louisiana, June 2018. https://doi.org/10.18653/v1/N18-1202,https://www.aclweb.org/anthology/N18-1202

  17. Pradhan, S., et al.: Towards Robust Linguistic Analysis using OntoNotes. In: Proceedings of the Seventeenth Conference on Computational Natural Language Learning, pp. 143–152. Association for Computational Linguistics, Sofia, Bulgaria, August 2013. https://www.aclweb.org/anthology/W13-3516

  18. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving Language Understanding by Generative Pre-Training. OpenAI (2018)

    Google Scholar 

  19. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners, 24

    Google Scholar 

  20. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000). https://doi.org/10.1023/A:1026543900054

  21. Seyler, D., Dembelova, T., Del Corro, L., Hoffart, J., Weikum, G.: A study of the importance of external knowledge in the named entity recognition task. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 241–246. Association for Computational Linguistics, Melbourne, Australia, July 2018. https://doi.org/10.18653/v1/P18-2039,https://www.aclweb.org/anthology/P18-2039

  22. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with convolutional-pooling structure for information retrieval. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 101–110. CIKM 2014, Association for Computing Machinery, New York, NY, USA, November 2014. https://doi.org/10.1145/2661829.2661935

  23. Sohrab, M.G., Miwa, M.: Deep exhaustive model for nested named entity recognition. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2843–2849. Association for Computational Linguistics, Brussels, Belgium, October 2018. https://doi.org/10.18653/v1/D18-1309, https://www.aclweb.org/anthology/D18-1309

  24. Strubell, E., Verga, P., Belanger, D., McCallum, A.: Fast and accurate entity recognition with iterated dilated convolutions. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2670–2680. Association for Computational Linguistics, Copenhagen, Denmark, September 2017. https://doi.org/10.18653/v1/D17-1283, https://www.aclweb.org/anthology/D17-1283

  25. Sutton, C., McCallum, A., Rohanimanesh, K.: Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data. J. Mach. Learn. Res. 8, 693–723 (2007). https://www.jmlr.org/papers/v8/sutton07a.html

  26. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pp. 142–147 (2003). https://www.aclweb.org/anthology/W03-0419

  27. Yan, H., Deng, B., Li, X., Qiu, X.: TENER: Adapting Transformer Encoder for Named Entity Recognition. arXiv:1911.04474 [cs], December 2019

  28. Zheng, C., Cai, Y., Xu, J., Leung, H.f., Xu, G.: A boundary-aware neural model for nested named entity recognition. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 357–366. Association for Computational Linguistics, Hong Kong, China, November 2019. 10.18653/v1/D19-1034, https://www.aclweb.org/anthology/D19-1034

Download references

Acknowledgement

This work is supported by the National Key Research and Development Program of China (grant No. 2017YFB1402400 and No. 2017YFB1402401) and the Key Research Program of Chongqing Science and Technology Bureau (grant No. cstc2019jscx-mbdxX0012, No. cstc2019jscx-fxyd0142 and No. cstc2020jscx-msxmX0149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Lyu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lyu, Y., Zhong, J. (2021). DSMER: A Deep Semantic Matching Based Framework for Named Entity Recognition. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72113-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72112-1

  • Online ISBN: 978-3-030-72113-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics