Skip to main content

MVP U-Net: Multi-View Pointwise U-Net for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12659))

Included in the following conference series:

Abstract

It is a challenging task to segment brain tumors from multi-modality MRI scans. How to segment and reconstruct brain tumors more accurately and faster remains an open question. The key is to effectively model spatial-temporal information that resides in the input volumetric data. In this paper, we propose Multi-View Pointwise U-Net (MVP U-Net) for brain tumor segmentation. Our segmentation approach follows encoder-decoder based 3D U-Net architecture, among which, the 3D convolution is replaced by three 2D multi-view convolutions in three orthogonal views (axial, sagittal, coronal) of the input data to learn spatial features and one pointwise convolution to learn channel features. Further, we modify the Squeeze-and-Excitation (SE) block properly and introduce it into our original MVP U-Net after the concatenation section. In this way, the generalization ability of the model can be improved while the number of parameters can be reduced. In BraTS 2020 testing dataset, the mean Dice scores of the proposed method were 0.715, 0.839, and 0.768 for enhanced tumor, whole tumor, and tumor core, respectively. The results show the effectiveness of the proposed MVP U-Net with the SE block for multi-modal brain tumor segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The cancer imaging archive. Nat. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. 286 (2017)

    Google Scholar 

  3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  5. Berman, M., Triki, A.R., Blaschko. , M.BT:he lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413–4421 (2018)

    Google Scholar 

  6. Chen, W., Liu, B., Peng, S., Sun, J., Qiao, X.: S3D-UNet: separable 3D U-Net for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 358–368. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_32

    Chapter  Google Scholar 

  7. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  9. Haque, H., Hashimoto, M., Uetake, N., Jinzaki, M.: Semantic segmentation of thigh muscle using 2.5 d deep learning network trained with limited datasets. arXiv preprint arXiv:1911.09249 (2019)

  10. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)d

    Google Scholar 

  12. Huang, C., Han, H., Yao, Q., Zhu, S., Zhou, S.K.: 3D U\(^2\)-Net: a 3D universal u-net for multi-domain medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 291–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_33

    Chapter  Google Scholar 

  13. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  14. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  15. Li, C., Zhong, Q., Xie, D., Pu, S.: Collaborative spatiotemporal feature learning for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7872–7881 (2019)

    Google Scholar 

  16. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  17. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 305–321 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant No. 61903336, 61703369, 61976190, Natural Science Foundation of Zhejiang Province under Grant No. LY21F030015, Key Research and Development Program of Zhejiang Province under Grant No. 2020C03070, Major Science & Technology Projects of Wenzhou under Grant No ZS2017007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanjing Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, C., Zhao, Z., Zeng, Q., Feng, Y. (2021). MVP U-Net: Multi-View Pointwise U-Net for Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72087-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72086-5

  • Online ISBN: 978-3-030-72087-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics