Skip to main content

Segmentation of the Multimodal Brain Tumor Images Used Res-U-Net

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12658))

Included in the following conference series:

Abstract

Gliomas are the most common brain tumors, which have a high mortality. Magnetic resonance imaging (MRI) is useful to assess gliomas, in which segmentation of multimodal brain tissues in 3D medical images is of great significance for brain diagnosis. Due to manual job for segmentation is time-consuming, an automated and accurate segmentation method is required. How to segment multimodal brain accurately is still a challenging task. To address this problem, we employ residual neural blocks and a U-Net architecture to build a novel network. We have evaluated the performances of different primary residual neural blocks in building U-Net. Our proposed method was evaluated on the validation set of BraTS 2020, in which our model makes an effective segmentation for the complete, core and enhancing tumor regions in Dice Similarity Coefficient (DSC) metric (0.89, 0.78, 0.72). And in testing set, our model got the DSC results of 0.87, 0.82, 0.80. Residual convolutional block is especially useful to improve performance in building model. Our proposed method is inherently general and is a powerful tool to studies of medical images of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. 286 (2017)

    Google Scholar 

  2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  5. Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_44

    Chapter  Google Scholar 

  6. Bauer, S., Wiest, R., Nolte, L.P., Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)

    Article  Google Scholar 

  7. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  8. Ding, Y., Gong, L., Zhang, M., Li, C., Qin, Z.: A multi-path adaptive fusion network for multimodal brain tumor segmentation. Neurocomputing 412, 19–30 (2020)

    Article  Google Scholar 

  9. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44

    Chapter  Google Scholar 

  10. Havaei, M., Jodoin, P.M., Larochelle, H.: Efficient interactive brain tumor segmentation as within-brain KNN classification. In: 2014 22nd International Conference on Pattern Recognition, pp. 556–561. IEEE (2014)

    Google Scholar 

  11. Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recogn. 38(12), 2270–2285 (2005)

    Article  Google Scholar 

  12. Lee, C.-H., Wang, S., Murtha, A., Brown, M.R.G., Greiner, R.: Segmenting brain tumors using pseudo–conditional random fields. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 359–366. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85988-8_43

    Chapter  Google Scholar 

  13. Li, J., Yu, Z.L., Gu, Z., Liu, H., Li, Y.: MMAN: multi-modality aggregation network for brain segmentation from MR images. Neurocomputing 358, 10–19 (2019)

    Article  Google Scholar 

  14. Liu, L., Cheng, J., Quan, Q., Wu, F.X., Wang, Y.P., Wang, J.: A survey on U-shaped networks in medical image segmentations. Neurocomputing 409, 244–258 (2020)

    Article  Google Scholar 

  15. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  16. Naser, M.A., Deen, M.J.: Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images. Comput. Biol. Med. 121, 103758 (2020)

    Article  Google Scholar 

  17. Noori, M., Bahri, A., Mohammadi, K.: Attention-guided version of 2D UNet for automatic brain tumor segmentation. In: 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 269–275. IEEE (2019)

    Google Scholar 

  18. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)

  21. Xu, F., Ma, H., Sun, J., Wu, R., Liu, X., Kong, Y.: LSTM multi-modal UNet for brain tumor segmentation. In: 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), pp. 236–240. IEEE (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Natural Science Foundation of China under Grant No. 61976126, Shandong Natural Science Foundation under Grant No. ZR2019MF003, No. ZR2017MF054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, J., Peng, Y., Li, D., Guo, Y. (2021). Segmentation of the Multimodal Brain Tumor Images Used Res-U-Net. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12658. Springer, Cham. https://doi.org/10.1007/978-3-030-72084-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72084-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72083-4

  • Online ISBN: 978-3-030-72084-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics