Skip to main content

Nanostructures in Photocatalysis: Opportunities and Challenges for Environmental Applications

  • Chapter
  • First Online:
Nanostructured Materials for Environmental Applications

Abstract

Photocatalysis can be a futuristic process for energy production and environmental remediation applications. It deals with applications such as H2 production from water and biomass; CO2 conversion into hydrocarbon fuels; degradation of various categories of pollutants such as dyes, pharmaceutical pollutants, polymeric pollutants, organic toxic pollutants, and N2 conversion into NH3; heavy metal reduction; antimicrobial activities; etc. However, the key effectiveness of these applications is directly associated with the photocatalytic materials. Therefore, the development of photocatalytic materials with required functionalities is the key in this photocatalysis process. In this direction, the fabrication of photocatalytic materials at nanoscale governs various properties of photocatalysts that include high surface area, rich active sites, dimensional dependent properties, high quantum yield, etc. However, it should also be noted that the control of dimension and morphology at nanoscale could also lead to some negative effects in photocatalysis. For instance, the decrement in particle size could lead to blue shift in the optical properties, i.e., the increment in the bandgap energy. On the other hand, the quantum confinement in the nanoscale materials also helps tuning the band structure of a photocatalyst, which is one of the deciding parameters of the photocatalytic process of the respective photocatalyst. In this context, this chapter discusses the various methods for the synthesis of nanostructured photocatalytic materials and their efficacies in various photocatalytic applications as above listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chae, Y., & An, Y. J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution, 240, 387–395.

    CAS  Google Scholar 

  2. Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C. U., & Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chemical Reviews, 119, 3510–3673.

    CAS  Google Scholar 

  3. Kumar, V., Sharma, A., Kaur, P., Sidhu, G. P. S., Bali, A. S., Bhardwaj, R., Thukral, A. K., & Cerda, A. (2019). Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 216, 449–462.

    CAS  Google Scholar 

  4. Byrnea, C., Subramanian, G., & Pillai, S. C. (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 6, 3531–3555.

    Google Scholar 

  5. Ahmed, S. N., & Haider, W. (2018). Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology, 29, 342001.

    Google Scholar 

  6. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38.

    Article  CAS  Google Scholar 

  7. Jardim, W. F., Moraes, S. G., & Takiyama, M. M. K. (1997). Photocatalytic degradation of aromatic chlorinated compounds using TiO2: Toxicity of intermediates. Water Research, 31, 1728–1732.

    CAS  Google Scholar 

  8. Martin, S. T., Lee, A. T., & Hoffmann, M. R. (1995). Chemical mechanism of inorganic oxidants in the TiO2/UV process: Increased rates of degradation of chlorinated hydrocarbons. Environmental Science & Technology, 29, 2567–2573.

    CAS  Google Scholar 

  9. Maness, P. C., Smolinski, S., Blake, D. M., Huang, Z., Wolfrum, E. J., & Jacoby, W. A. (1999). Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Applied and Environmental Microbiology, 65, 4094–4098.

    CAS  Google Scholar 

  10. Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment: A critical review. Water Research, 139, 118–131.

    CAS  Google Scholar 

  11. Poza-Nogueiras, V., Rosales, E., Pazos, M., & Sanroman, M. A. (2018). Current advances and trends in electro-Fenton process using heterogeneous catalysts – a review. Chemosphere, 201, 399–416.

    CAS  Google Scholar 

  12. Du, J., Wang, Z., Li, Y. H., Li, R. Q., Li, X. Y., & Wang, K. Y. (2019). Establishing WO3/g-C3N4 composite for “Memory” photocatalytic activity and enhancement in photocatalytic degradation. Catalysis Letters, 149, 1167–1173.

    CAS  Google Scholar 

  13. Low, J., Yu, J., Jaroniec, M., Wageh, S., & Al-Ghamdi, A. A. (2017). Heterojunction photocatalysts. Advanced Materials, 24, 1601694.

    Google Scholar 

  14. Xu, Q., Zhang, L., Yu, J., Wageh, S., Al-Ghamdi, A. A., & Jaroniec, M. (2018). Direct Z-scheme photocatalysis: Principles, synthesis and applications. Materials Today, 22, 1042–1063.

    Google Scholar 

  15. Wang, D., Pillai, S. C., Ho, S. H., Zeng, J., Li, Y., & Dionysiou, D. D. (2018). Plasmonic-based nanomaterials for environmental remediation. Applied Catalysis B: Environmental, 237, 721–741.

    CAS  Google Scholar 

  16. Reddy, N. L., Rao, V. N., Vijayakumar, M., Santhosh, R., Anandan, S., Karthik, M., Shankar, M. V., Reddy, K. R., Shetti, N. P., Nadagouda, M. N., & Aminabhavi, T. M. (2019). A review on frontiers in plasmonic nano-photocatalysts for hydrogen production. International Journal of Hydrogen Energy, 44, 10453–10472.

    CAS  Google Scholar 

  17. N.R. Yogamalar, S. Kalpana, V. Senthil, A. Chithambararaj, Ferroelectrics for photocatalysis, multifunctional photocatalytic materials for energy, 2018, pp. 3017–324.

    Google Scholar 

  18. Han, Q., Wang, B., Gao, J., Cheng, Z., Zhao, Y., Zhang, Z., & Qu, L. (2016). Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano, 10, 2745–2751.

    CAS  Google Scholar 

  19. Jiang, L., Yuana, X., Pana, Y., Liang, J., Zeng, G., Wu, Z., & Wang, H. (2017). Doping of graphitic carbon nitride for photocatalysis: A review. Applied Catalysis B: Environmental, 217, 388–406.

    CAS  Google Scholar 

  20. Nasirian, M., Lin, Y. P., Bustillo-Lecompte, C. F., & Mehrvar, M. (2018). Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: A review. International Journal of Environmental Science and Technology, 15, 2009–2032.

    CAS  Google Scholar 

  21. Deebasree, J. P., Maheskumar, V., & Vidhya, B. (2018). Investigation of the visible light photocatalytic activity of BiVO4 prepared by sol-gel method assisted by ultrasonication. Ultrasonics Sonochemistry, 45, 123–132.

    CAS  Google Scholar 

  22. Gnanam, S., & Rajendran, V. (2018). Facile sol–gel preparation of Cd-doped cerium oxide (CeO2) nanoparticles and their photocatalytic activities. Journal of Alloys and Compounds, 735, 1854–1862.

    CAS  Google Scholar 

  23. Alam, U., Shah, T. A., Khan, A., & Muneer, M. (2019). One-pot ultrasonic assisted sol-gel synthesis of spindle-like Nd and V codoped ZnO for efficient photocatalytic degradation of organic pollutants. Separation and Purification Technology, 212, 427–437.

    CAS  Google Scholar 

  24. Azimi-Fouladia, A., Hassanzadeh-Tabrizia, S. A., & Saffar-Teluri, A. (2018). Sol–gel synthesis and characterization of TiO2–CdO–Ag nanocomposite with superior photocatalytic efficiency. Ceramics International, 44, 4292–4297.

    Google Scholar 

  25. Mazloom, F., Ghiyasiyan-Aran, M., Monsef, R., & Salavati-Niasari, M. (2018). Photocatalytic degradation of diverse organic dyes by sol–gel synthesized Cd2V2O7 nanostructures. Journal of Materials Science: Materials in Electronics, 29, 18120–18127.

    CAS  Google Scholar 

  26. Yu, H., Wang, J., Xia, C., Yan, X., & Cheng, P. (2018). Template-free hydrothermal synthesis of Flower-like hierarchical zinc oxide nanostructures. Optik, 168, 778–783.

    CAS  Google Scholar 

  27. Li, H., Meng, F., Gong, J., Fan, Z., & Qin, R. (2018). Template-free hydrothermal synthesis, mechanism and photocatalytic properties of Core–Shell CeO2 nanospheres. Electronic Materials Letters, 14, 474–487.

    CAS  Google Scholar 

  28. Xu, M., Jia, S., Cheng, C., Zhang, Z., Yan, J., Guo, Y., Zhang, Y., Zhao, W., Yun, J., & Wang, Y. (2018). Microwave-assistant hydrothermal synthesis of SnO2@ZnO hierarchical nanostructures enhanced photocatalytic performance under visible light irradiation. Materials Research Bulletin, 106, 74–80.

    CAS  Google Scholar 

  29. Prabhu, Y. T., Rao, V. N., Shankar, M. V., Sreedhar, B., & Pal, U. (2019). Facile hydrothermal synthesis of CuO@ZnO heterojunction nanostructures for enhanced photocatalytic hydrogen evolution. New Journal of Chemistry, 43, 6794–6805.

    CAS  Google Scholar 

  30. Zhou, B., Li, Y., Bai, J., Li, X., Li, F., & Liu, L. (2019). Controlled synthesis of rh-In2O3 nanostructures with different morphologies for efficient photocatalytic degradation of oxytetracycline. Applied Surface Science, 464, 115–124.

    CAS  Google Scholar 

  31. Jaihindh, D. P., Thirumalraj, B., Chen, S. M., Balasubramanian, P., & Fu, Y. P. (2019). Facile synthesis of hierarchically nanostructured bismuth vanadate: An efficient photocatalyst for degradation and detection of hexavalent chromium. Journal of Hazardous Materials, 367, 647–657.

    CAS  Google Scholar 

  32. Liu, Y., Ma, Y., Liu, W., Shang, Y., Zhu, A., Tan, P., Xiong, X., & Pan, J. (2018). Facet and morphology dependent photocatalytic hydrogen evolution with CdS nanoflowers using a novel mixed solvothermal strategy. Dalton Transactions, 47, 1325–1336.

    Google Scholar 

  33. Mao, Y., Li, Y., Zou, Y., Shen, X., Zhu, L., & Liao, G. (2019). Solvothermal synthesis and photocatalytic properties of ZnO micro/nanostructures. Ceramics International, 45, 1724–1729.

    CAS  Google Scholar 

  34. Rao, M. P., Wu, J. J., Asiri, A. M., Anandan, S., & Ashokkumar, M. (2018). Photocatalytic properties of hierarchical CuO nanosheets synthesized by a solution phase method. Journal of Environmental Sciences, 69, 115–124.

    Google Scholar 

  35. Ebadi, M., Amiri, O., & Sabet, M. (2018). Synthesis of CeO2/Au/Ho nanostructures as novel and highly efficient visible light driven photocatalyst. Separation and Purification Technology, 190, 117–122.

    CAS  Google Scholar 

  36. Zinatloo-Ajabshir, S., Mortazavi-Derazkola, S., & Salavati-Niasari, M. (2017). Preparation, characterization and photocatalytic degradation of methyl violet pollutant of holmium oxide nanostructures prepared through a facile precipitation method. Journal of Molecular Liquids, 213, 306–313.

    Google Scholar 

  37. Zinatloo-Ajabshir, S., Mortazavi-Derazkola, S., & Salavati-Niasari, M. (2017). Nd2O3 nanostructures: Simple synthesis, characterization and its photocatalytic degradation of methylene blue. Journal of Molecular Liquids, 234, 430–436.

    CAS  Google Scholar 

  38. Liu, W., Yin, L., Zhang, R., Yang, H., Ma, J., & Cao, W. (2018). One-step synthesis of SnO hierarchical architectures under room temperature and their photocatalytic properties. Nanotechnology, 29, 28.

    Google Scholar 

  39. Zwilling, V., Darque-Ceretti, E., Forveille, A. B., David, D., Perrin, M. Y., & Aucouturier, M. (1999). Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 27, 629–637.

    CAS  Google Scholar 

  40. Moriai, K., Nakajima, N., Moriyoshi, C., & Maruyama, H. (2018). Synthesis of TiO2 nanotubes: Effect of post-treatment on crystallinity and photocatalytic activity. Materials Research Express, 4.

    Google Scholar 

  41. Brammer, K. S., Frandsen, C. J., & Jin, S. (2012). TiO2 nanotubes for bone regeneration. Trends in Biotechnology, 30, 315–322.

    CAS  Google Scholar 

  42. Al-Hazeem, N. Z. A. (2018). Nanofibers and electrospinning method, novel nanomaterials—synthesis and applications. IntechOpen.

    Google Scholar 

  43. Wang, K., Zhang, W., Lou, F., Wei, T., Qian, Z., & Guo, W. (2018). Preparation of electrospun heterostructured hollow SnO2/CuO nanofibers and their enhanced visible light photocatalytic performance. Journal of Solid State Electrochemistry, 22, 2413–2423.

    CAS  Google Scholar 

  44. Deng, J., Liu, J., Dai, H., & Wang, W. (2018). Preparation of α-Fe2O3 nanowires through electrospinning and their Ag3PO4 heterojunction composites with enhanced visible light photocatalytic activity. Ferroelctrics, 528, 58–65.

    CAS  Google Scholar 

  45. Shi, R., Zhang, Y., Wang, X., Ma, Q., Zhang, A., & Yang, P. (2018). Electrospun ZnFe2O4 nanotubes and nanobelts: Morphology evolution, formation mechanism and Fenton-like photocatalytic activities. Materials Chemistry and Physics, 207, 114–122.

    CAS  Google Scholar 

  46. Pascariu, P., Homocianu, M., Cojocaru, C., Samoila, P., Airinei, A., & Suchea, M. (2019). Preparation of La doped ZnO ceramic nanostructures by electrospinning–calcination method: Effect of La3+ doping on optical and photocatalytic properties. Applied Surface Science, 476, 16–27.

    CAS  Google Scholar 

  47. Campagnolo, L., Lauciello, S., Athanassiou, A., & Fragouli, D. (2019). Au/ZnO Hybrid nanostructures on electrospun polymeric mats for improved photocatalytic degradation of organic pollutants. Water, 11, 1787.

    CAS  Google Scholar 

  48. Mohassel, R., Sobhani, A., Salavati-Niasari, M., & Goudarzi, M. (2018). Pechini synthesis and characteristics of Gd2CoMnO6 nanostructures and its structural, optical and photocatalytic properties. Spectrochim Acta Part A: Mol Biomol Spectrosc, 204, 232–240.

    CAS  Google Scholar 

  49. Morassaei, M. S., Zinatloo-Ajabshir, S., & Salavati-Niasari, M. (2017). Nd2Sn2O7 nanostructures: New facile Pechini preparation, characterization, and investigation of their photocatalytic degradation of methyl orange dye. Advanced Powder Technology, 28, 697–705.

    CAS  Google Scholar 

  50. Aflaki, M., & Davar, F. (2016). Synthesis, luminescence and photocatalyst properties of zirconia nanosheets by modified Pechini method. Journal of Molecular Liquids, 221, 1071–1079.

    CAS  Google Scholar 

  51. Ranjeh, M., Beshkar, F., Amiri, O., Salavati-Niasari, M., & Moayedi, H. (2020). Pechini sol–gel synthesis of Cu2O/Li3BO3 and CuO/Li3BO3 nanocomposites for visible light-driven photocatalytic degradation of dye pollutant. Journal of Alloys and Compounds, 815, 152451.

    CAS  Google Scholar 

  52. Valian, M., Beshkar, F., & Salavati-Niasari, M. (2017). Urchin-like Dy2CoMnO6 double perovskite nanostructures: New simple fabrication and investigation of their photocatalytic properties. Journal of Materials Science: Materials in Electronics, 28, 12440–12447.

    CAS  Google Scholar 

  53. Emsaki, M., Hassanzadeh-Tabrizi, S. A., & Saffar-Teluri, A. (2018). Microemulsion synthesis of ZnO–ZnWO4 nanoparticles for superior photodegradation of organic dyes in water. Journal of Materials Science: Materials in Electronics, 29, 2384–2391.

    CAS  Google Scholar 

  54. Mahdi Honarmand, M., Mehr, M. E., Yarahmadi, M., & Siadati, M. H. (2019). Effects of different surfactants on morphology of TiO2 and Zr-doped TiO2 nanoparticles and their applications in MB dye photocatalytic degradation. SN Applied Sciences, 1, 505.

    Google Scholar 

  55. Rodriguez-Rodriguez, A. A., Moreno-Trejo, M. B., Melendez-Zaragoza, M. J., Collins-Martinez, V., Lopez-Ortiz, A., Martinez-Guerra, E., & Sanchez-Dominguez, M. (2019). Spinel-type ferrite nanoparticles: Synthesis by the oil-in-water micro-emulsion reaction method and photocatalytic water-splitting evaluation. International Journal of Hydrogen Energy, 44, 12421–124291.

    CAS  Google Scholar 

  56. Zhang, L., Dai, Z., Zheng, G., Mu, J., & Yao, Z. (2017). Synthesis and photocatalytic properties of Bi2MoO6 nanoparticles prepared via a water-in-oil microemulsion method. Ferroelectrics, 530, 17–24.

    Google Scholar 

  57. Mousavi-Kamazani, M. (2019). Facile sonochemical-assisted synthesis of Cu/ZnO/Al2O3 nanocomposites under vacuum: Optical and photocatalytic studies. Ultrasonics: Sonochem, 58, 104636.

    CAS  Google Scholar 

  58. Yein, W. T., Wang, Q., Feng, X., Li, Y., & Wu, X. (2018). Enhancement of photocatalytic performance in sonochemical synthesized ZnO–rGO nanocomposites owing to effective interfacial interaction. Environmental Chemistry Letters, 16, 251–264.

    CAS  Google Scholar 

  59. Ghiyasiyan-Arani, M., Salavati-Niasari, M., Masjedi-Arani, M., & Mazloom, F. (2018). An easy sonochemical route for synthesis, characterization and photocatalytic performance of nanosized FeVO4 in the presence of aminoacids as green capping agents. Journal of Materials Science: Materials in Electronics, 29, 474–485.

    CAS  Google Scholar 

  60. Ghanbari, M., & Salavati-Niasari, M. (2018). Tl4CdI6 nanostructures: Facile sonochemical synthesis and photocatalytic activity for removal of organic dyes. Inorganic Chemistry, 57, 11443–11455.

    CAS  Google Scholar 

  61. Sobhani-Nasab, A., Pourmasoud, S., Ahmadi, F., Wysokowski, M., Jesionowski, T., Ehrlich, H., & Rahimi-Nasrabadi, M. (2019). Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Materials Letters, 238, 159–162.

    CAS  Google Scholar 

  62. Velanganni, S., Pravinraj, S., Immanuel, P., & Thiruneelakandan, R. (2018). Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue. Physica B: Condensed Matter, 534, 56–62.

    CAS  Google Scholar 

  63. Ghalajkhani, A., Haghighi, M., & Shabani, M. (2018). Efficient photocatalytic degradation of methylene blue in aqueous solution over flowerlike nanostructured MoS2-FeZnO staggered heterojunction under simulated solar-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 359, 145–156.

    CAS  Google Scholar 

  64. Liu, X., Jin, A., Jia, Y., Xia, T., Deng, C., Zhu, M., Chen, C., & Chen, X. (2017). Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Applied Surface Science, 405, 359–371.

    CAS  Google Scholar 

  65. Nithya, M., Vidhya, S., & Keerthi. (2019). Novel g-C3N4/MnV2O6 heterojunction photocatalyst for the removal of methylene blue and indigo carmine. Chemical Physics Letters, 731, 136832.

    Google Scholar 

  66. Zinatloo-Ajabshir, S., & Salavati-Niasari, M. (2017). Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd2Zr2O7 nanostructures prepared by a modified Pechini approach. Separation and Purification Technology, 179, 77–85.

    CAS  Google Scholar 

  67. Gowthami, K., Krishnakumar, B., Sobral, A. J. F. N., Thirunarayanan, G., Swaminathan, M., Siranjeevi, R., Rajachandrasekar, T., & Muthuvel, I. (2019). Fabrication of hybrid Fe2V4O13/ZnO heterostructure for effective mineralization of aqueous methyl orange solution. Journal of Cluster Science.

    Google Scholar 

  68. Becerril-Altamirano, N. L., López, R. T. H., Reyes, L. G., Parra, A. R. S., Lopez, R. R., Jimenez, A. M., & Hernández-Perez, I. Reactive Black-5 photodegradation by TiO2 thin films prepared by ultrasonic spray. Journal of Physics: Conference Series, 1221, 2019, 012027.

    Google Scholar 

  69. Sane, P. K., Tambat, S., Sontakke, S., & Nemade, P. (2018). Visible light removal of reactive dyes using CeO2 synthesized by precipitation. Journal of Environmental Chemical Engineering, 6, 4476–4489.

    CAS  Google Scholar 

  70. Xia, Y., He, Z., Su, J., Liu, Y., Tang, B., & Li, X. (2018). Fabrication of novel n-SrTiO3/p-BiOI heterojunction for degradation of crystal violet under simulated solar light irradiation. Nano, 13, 1850070.

    CAS  Google Scholar 

  71. Lina, Y., Wua, S., Lia, X., Wua, X., Yanga, C., Zenga, G., Penga, Y., Zhoua, Q., & Lub, L. (2018). Microstructure and performance of Z-scheme photocatalyst of silver phosphate modified by MWCNTs and Cr-doped SrTiO3 for malachite green degradation. Applied Catalysis B: Environmental, 227, 557–570.

    Google Scholar 

  72. Sharma, G., Gupta, V. K., Agarwal, S., Kumar, A., Thakur, S., & Pathania, D. (2016). Fabrication and characterization of Fe@MoPO nanoparticles: Ion exchange behavior and photocatalytic activity against malachite green. Journal of Molecular Liquids, 219, 1137–1143.

    CAS  Google Scholar 

  73. Akerdi, A. G., Bahrami, S. H., Arami, M., & Pajootan, E. (2016). Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate. Chemosphere, 159, 293–299.

    CAS  Google Scholar 

  74. Mirzaei, A., Yerushalmi, L., Chen, Z., & Haghighat, F. (2018). Photocatalytic degradation of sulfamethoxazole by hierarchical magnetic ZnO@g-C3N4: RSM optimization, kinetic study, reaction pathway and toxicity evaluation. Journal of Hazardous Materials, 359, 516–526.

    CAS  Google Scholar 

  75. Ye, Y., Feng, Y., Bruning, H., Yntema, D., & Rijnaarts, H. H. M. (2018). Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species. Applied Catalysis B: Environmental, 220, 171–181.

    CAS  Google Scholar 

  76. Jallouli, N., Pastrana-Martínez, L. M., Ribeiro, A. R., Moreira, N. F. F., Faria, J. L., Hentati, O., Silva, A. M. T., & Ksibi, M. (2018). Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chemical Engineering Journal, 334, 976–984.

    CAS  Google Scholar 

  77. Elhalil, A., Elmoubarki, R., Farnane, M., Machrouhi, A., Mahjoubi, F. Z., Sadiq, M., Qourzal, S., & Barka, N. (2018). Photocatalytic degradation of caffeine as a model pharmaceutical pollutant Mg doped ZnO-Al2O3 heterostructure. ENMM, 10, 63–72.

    Google Scholar 

  78. Sacco, O., Murcia, J. J., Lara, A. E., Hernandez-Laverde, M., Rojas, H., Naio, J. A., Hidalgo, M. C., & Vaiano, V. (2020). Pt–TiO2–Nb2O5 heterojunction as effective photocatalyst for the degradation of diclofenac and ketoprofen. Materials Science in Semiconductor Processing, 107, 104839.

    CAS  Google Scholar 

  79. Raizadaa, P., Kumaria, J., Dhiman, R., Singhb, V. P., & Singha, P. (2017). Magnetically retrievable Bi2WO6/Fe3O4 immobilized on graphene sand composite for investigation of photocatalytic mineralization of oxytetracycline and ampicillin. Process Safety and Environmental Protection, 106, 104–116.

    Google Scholar 

  80. Nguyen, T. T., Nam, S. N., Son, J., & Oh, J. (2019). Tungsten Trioxide (WO3)-assisted photocatalytic degradation of amoxicillin by simulated solar irradiation. Scientific Reports, 9, 9349.

    Google Scholar 

  81. Tang, X., Wang, Z., & Wang, Y. (2018). Visible active N-doped TiO2/reduced graphene oxide for the degradation of tetracycline hydrochloride. Chemical Physics Letters, 691, 408–414.

    CAS  Google Scholar 

  82. Hong, Y., Li, C., Yin, B., Li, D., Zhang, Z., Mao, B., Fan, W., Gu, W., & Shi, W. (2018). Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite. Chemical Engineering Journal, 338, 137–146.

    CAS  Google Scholar 

  83. Tahir, M. B., Sagir, M., & Shahzad, K. (2019). Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3-TiO2 @g-C3N4 composite. Journal of Hazardous Materials, 363, 205–213.

    CAS  Google Scholar 

  84. Akbarzadeh, R., Fung, C. S. L., Rather, R. A., & Lo, I. M. C. (2018). One-pot hydrothermal synthesis of g-C3N4/Ag/AgCl/BiVO4 micro-flower composite for the visible light degradation of ibuprofen. Chemical Engineering Journal, 341, 248–261.

    CAS  Google Scholar 

  85. Kumar, A., Sharma, S. K., Sharma, G., Al-Muhtaseb, A. H., Naushad, M., & Ghfar, A. A. (2019). Wide spectral degradation of Norfloxacin by Ag@BiPO4/BiOBr/BiFeO3 nano-assembly: Elucidating the photocatalytic mechanism under different light sources. Journal of Hazardous Materials, 364, 429–440.

    CAS  Google Scholar 

  86. Wanga, L., Yang, G., Wang, D., Lu, C., Guana, W., Li, Y., Deng, J., & Crittenden, J. (2019). Fabrication of the flower-flake-like CuBi2O4/Bi2WO6 heterostructure as efficient visible-light driven photocatalysts: Performance, kinetics and mechanism insight. Applied Surface Science, 495, 143521.

    Google Scholar 

  87. Khadgi, N., Li, Y., Upreti, A. R., Zhang, C., Zhang, W., Wang, Y., & Wang, D. (2016). Enhanced photocatalytic degradation of 17 α-ethinylestradiol exhibited by multifunctional ZnFe2O4–Ag/rGO nanocomposite under visible light. Photochemistry and Photobiology, 92, 238–246.

    CAS  Google Scholar 

  88. Mi, X., Han, J., Sun, Y., Li, Y., Hu, W., & Zhan, S. (2019). Enhanced catalytic degradation by using RGO-Ce/WO3 nanosheets modified CF as electro-Fenton cathode: Influence factors, reaction mechanism and pathways. Journal of Hazardous Materials, 367, 365–374.

    CAS  Google Scholar 

  89. Verma, R., Singh, S., Dalai, M. K., Saravanan, M., Agrawal, V. V., & Srivastava, A. K. (2017). Photocatalytic degradation of polypropylene film using TiO2-based nanomaterials under solar irradiation. Materials and Design, 133, 10–18.

    CAS  Google Scholar 

  90. Kamalian, P., Khorasani, S. N., Abdolmalek, A., & Neisiany, R. E. (2019). Grafted ZnO nanoparticles used for development in photocatalytic degradation performance of polyethylene. Polymer Bulletin, 76, 3593–3606.

    CAS  Google Scholar 

  91. Tu-morn, M., Pairoh, N., Sutapun, W., & Trongsatitkul, T. (2019). Effects of titanium dioxide nanoparticle on enhancing degradation of polylactic acid/low density polyethylene blend films. Materials Today: Proceedings, 17, 2048–2061.

    CAS  Google Scholar 

  92. Soitong, T. (2018). Photo-degradation of polypropylene-ascorbic acid TiO2 composite films. International Polymer Processing, 33, 29–34.

    CAS  Google Scholar 

  93. Koysuren, H. N. (2018). Solid-phase photocatalytic degradation of polyvinyl borate. Catalysts, 8, 499.

    Google Scholar 

  94. Tofa, T. S., Kunjali, K. L., Paul, S., & Dutta, J. (2019). Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environmental Chemistry Letters, 17, 1341–1346.

    CAS  Google Scholar 

  95. Xu, F., Zhang, J., Zhu, B., Yu, J., & Xu, J. (2018). CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 230, 194–202.

    CAS  Google Scholar 

  96. Zhang, S., Yin, X., & Zheng, Y. (2018). Enhanced photocatalytic reduction of CO2 to methanol by ZnO nanoparticles deposited on ZnSe nanosheet. Chemical Physics Letters, 693, 170–175.

    CAS  Google Scholar 

  97. Bhosale, R., Jain, S., Vinod, C. P., Kumar, S., & Ogale, S. (2019). Direct Z-Scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light. ACS Applied Materials & Interfaces, 11, 6174–6183.

    CAS  Google Scholar 

  98. Jiang, Z., Wan, W., Li, H., Yuan, S., Zhao, H., & Wong, P. K. (2018). A hierarchical Z-Scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Advanced Materials, 30, 1706108.

    Google Scholar 

  99. Lingampalli, S. R., Ayyub, M. M., Magesh, G., & Rao, C. N. R. (2018). Photocatalytic reduction of CO2 by employing ZnO/Ag1-x Cux/CdS and related heterostructures. Chemical Physics Letters, 691, 28–32.

    CAS  Google Scholar 

  100. Kim, C., Cho, K. M., Al-Saggaf, A., Gereige, I., & Jung, H. T. (2018). Z-scheme photocatalytic CO2 conversion on three-dimensional BiVO4/carbon-coated Cu2O nanowire arrays under visible light. ACS Catalysis, 8, 4170–4177.

    CAS  Google Scholar 

  101. Y. W. Teh, Y. W. Goh, X. Y. Kong, B. J. Ng, S. T. Yong, S. P Chai, Fabrication of Bi2WO6/Cu/WO3 all-solid-state Z-scheme composite photocatalyst to improve CO2 photoreduction under visible light irradiation.

    Google Scholar 

  102. Tan, D., Zhang, J., Shi, J., Li, S., Zhang, B., Tan, X., Zhang, F., Liu, L., Shao, D., & Han, B. (2018). Photocatalytic CO2 transformation to CH4 by Ag/Pd bimetals supported on N-Doped TiO2 nanosheet. ACS Applied Materials & Interfaces, 10, 24516–24522.

    CAS  Google Scholar 

  103. Pan, Y. X., You, Y., Xin, S., Li, Y., Fu, G., Cui, Z., Men, Y. L., Cao, F. F., Yu, S. H., & Goodenough, J. B. (2017). Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. Journal of the American Chemical Society, 139, 4123–4129.

    CAS  Google Scholar 

  104. Guan, J., Wang, H., Li, J., Maa, C., & Huo, P. (2019). Enhanced photocatalytic reduction of CO2 by fabricating In2O3/CeO2/HATP hybrid multi-junction photocatalyst. Journal of the Taiwan Institute of Chemical Engineers, 99, 93–103.

    Google Scholar 

  105. Jia, P., Guo, R., Pan, W., Huang, C., Tang, J., Liu, X., Qin, H., & Xu, Q. (2019). The MoS2/TiO2 heterojunction composites with enhanced activity for CO2 photocatalytic reduction under visible light irradiation. Colloids and Surfaces, 570, 306–316.

    CAS  Google Scholar 

  106. Cao, S., Shen, B., Tong, T., Fu, J., & Yu, J. (2018). 2D/2D Heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Advanced Functional Materials, 28, 1800136.

    Google Scholar 

  107. Meng, A., Zhang, L., Cheng, B., & Yu, J. (2019). TiO2−MnOx−Pt, Hybrid multiheterojunction film photocatalyst with enhanced photocatalytic CO2-reduction activity. ACS Applied Materials & Interfaces, 11, 5581–5589.

    CAS  Google Scholar 

  108. Xu, C., Qiu, P., Li, L., Chen, H., Jiang, F., & Wang, X. (2018). Bismuth subcarbonate with designer defects for broad spectrum photocatalytic nitrogen fixation. ACS Applied Materials & Interfaces, 10, 25321–25328.

    CAS  Google Scholar 

  109. Guo, L., Han, X., Zhang, K., Zhang, Y., Zhao, Q., Wang, D., & Fu, F. (2019). In-Situ construction of 2D/2D ZnIn2S4/BiOCl heterostructure with enhanced photocatalytic activity for N2 fixation and phenol degradation. Catalysts, 9, 729.

    CAS  Google Scholar 

  110. Zhang, C., Xu, Y., Lv, C., Bai, L., Liao, J., Zhai, Y., Zhang, H., & Chen, G. (2020). Amorphous engineered cerium oxides photocatalyst for efficient nitrogen fixation. Applied Catalysis B: Environmental, 264, 118416.

    CAS  Google Scholar 

  111. Liu, Q., Ai, L., & Jiang, J. (2018). MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation. Journal of Materials Chemistry A, 6, 4102–4110.

    CAS  Google Scholar 

  112. Li, X., Sun, X., Zhang, L., Sun, S., & Wang, W. (2018). Efficient photocatalytic fixation of N2 by KOH treated g-C3N4. Journal of Materials Chemistry A, 6, 3005–3011.

    CAS  Google Scholar 

  113. Sun, S., An, Q., Wang, W., Zhang, L., Liu, J., & Goddard, W. A. (2017). Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. Journal of Materials Chemistry, 5, 201–209.

    CAS  Google Scholar 

  114. Wu, S., Tan, X., Liu, K., Lei, J., Wang, L., & Zhang, J. (2019). TiO2 (B) nanotubes with ultrathin shell for highly efficient photocatalytic fixation of nitrogen. Catalysis Today, 335, 214–220.

    CAS  Google Scholar 

  115. Hirakawa, H., Hashimoto, M., Shiraishi, Y., & Hirai, T. (2017). Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. Journal of the American Chemical Society, 139, 10929–10936.

    CAS  Google Scholar 

  116. Li, Z., Gu, G., Hu, S., Zou, X., & Wu, G. (2019). Promotion of activation ability of N vacancies to N2 molecules on sulfur-doped graphitic carbon nitride with outstanding photocatalytic nitrogen fixation ability. Chinese Journal of Catalysis, 40, 1178–1186.

    CAS  Google Scholar 

  117. Wu, G., Yu, L., Liu, Y., Zhao, J., Han, Z., & Geng, G. (2019). One step synthesis of N vacancy-doped g-C3N4/Ag2CO3 heterojunction catalyst with outstanding “two-path” photocatalytic N2 fixation ability via in-situ self-sacrificial method. Applied Surface Science, 481, 649–660.

    CAS  Google Scholar 

  118. Nazemi, M., & El-Sayeda, M. A. (2019). Plasmon-enhanced photo(electro)chemical nitrogen fixation under ambient conditions using visible light responsive hybrid hollow Au-Ag2O nanocages. Nano Energy, 63, 103886.

    CAS  Google Scholar 

  119. Liao, Y., Lin, J., Cui, B., Xie, G., & Hu, S. (2020). Well-dispersed ultrasmall ruthenium on TiO2(P25) for effective photocatalytic N2 fixation in ambient condition. Journal of Photochemistry and Photobiology A: Chemistry, 387, 112100.

    CAS  Google Scholar 

  120. Gao, X., An, L., Qu, D., Jiang, W., Chai, Y., Sun, S., Liu, X., & Sun, Z. (2019). Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst. Scientific Bulletin, 64, 918–925.

    CAS  Google Scholar 

  121. Zhang, G., Chen, D., Li, N., Xu, Q., Li, H., He, J., & Lu, J. (2018). SnS2/SnO2 heterostructured nanosheet arrays grown on carbon cloth for efficient photocatalytic reduction of Cr(VI). Journal of Colloid and Interface Science, 514, 306–315.

    CAS  Google Scholar 

  122. Le, A. T., Pung, S. Y., Sreekantan, S., Matsuda, A., & Huynh, D. P. (2019). Mechanisms of removal of heavy metal ions by ZnO particles. Heliyon, 5, e01440.

    Google Scholar 

  123. Dong, C., Lu, J., Qiu, B., Shen, B., Xing, M., & Zhang, J. (2018). Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Applied Catalysis B: Environmental, 222, 146–156.

    CAS  Google Scholar 

  124. Zhang, H., Wang, X., Li, N., Xia, J., Meng, Q., Ding, J., & Lu, J. (2018). Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate. RSC Advances, 8, 34241.

    CAS  Google Scholar 

  125. Ghafoor, S., Hussain, S. Z., Waseem, S., & Arshad, S. N. (2018). Photo-reduction of heavy metal ions and photo disinfection of pathogenic bacteria under simulated solar light using photosensitized TiO2 nanofibers. RSC Advances, 8, 20354.

    CAS  Google Scholar 

  126. Du, Y., Zhang, S., Wang, J., Wu, J., & Dai, H. (2018). Nb2O5 nanowires in-situ grown on carbon fiber: A high efficiency material for the photocatalytic reduction of Cr(VI). Journal of Environmental Sciences, 66, 358–367.

    Google Scholar 

  127. Cui, Y., Li, M., Wang, H., Yang, C., Meng, S., & Chen, F. (2018). In-situ synthesis of sulfur doped carbon nitride microsphere for outstanding visible light photocatalytic Cr(VI) reduction. Separation and Purification Technology, 199, 251–259.

    CAS  Google Scholar 

  128. Huang, Q., Liu, Y., Cai, T., & Xi, X. (2018). Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/ Ti3C2 nanocomposite. Advances in Colloid and Interface Science, 254, 76–93.

    Google Scholar 

  129. She, P., Li, J., Bao, H., Xu, X., & Hong, Z. (2019). Green synthesis of Ag nanoparticles decorated phosphorus doped g-C3N4 with enhanced visible-light-driven bactericidal activity. Journal of Photochemistry and Photobiology A: Chemistry, 384, 112028.

    CAS  Google Scholar 

  130. Zhou, Q., Ma, S., & Zhan, S. (2018). Superior photocatalytic disinfection effect of Ag-3D ordered mesoporous CeO2 under visible light. Applied Catalysis B: Environmental, 224, 27–37.

    CAS  Google Scholar 

  131. Liang, J., Deng, J., Liu, F., Li, M., & Tong, M. (2018). Enhanced bacterial disinfection by Bi2MoO6-AgBr under visible light irradiation. Colloids and Surfaces B: Biointerfaces, 161, 528–536.

    CAS  Google Scholar 

  132. Zhang, B., Zou, S., Cai, R., Li, M., & He, Z. (2018). Highly-efficient photocatalytic disinfection of Escherichia coli under visible light using carbon supported vanadium tetrasulfide nanocomposites. Applied Catalysis B: Environmental, 224, 383–393.

    CAS  Google Scholar 

  133. Xu, Y., Liu, Q., Liu, C., Zhai, Y., Xie, M., Huang, L., Xu, H., Li, H., & Jing, J. (2018). Visible-light-driven Ag/AgBr/ZnFe2O4 composites with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation. Journal of Colloid and Interface Science, 512, 555–566.

    CAS  Google Scholar 

  134. Ma, S., Zhan, S., Xia, Y., Wang, P., Hou, Q., & Zhou, Q. (2019). Enhanced photocatalytic bactericidal performance and mechanism with novel Ag/ZnO/g-C3N4 composite under visible light. Catalysis Today, 330, 179–188.

    CAS  Google Scholar 

  135. Yu, P., Zhou, X., Yan, Y., Li, Z., & Zheng, T. (2019). Enhanced visible-light-driven photocatalytic disinfection using AgBr modified g-C3N4 composite and its mechanism. Colloids and Surfaces B: Biointerfaces, 179, 170–179.

    CAS  Google Scholar 

  136. Mathew, S., Ganguly, P., Rhatigan, S., Kumaravel, V., Byrne, C., Hinder, S. J., Bartlett, J., Nolan, M., & Pillai, S. C. (2018). Cu-Doped TiO2: Visible light assisted photocatalytic antimicrobial activity. Applied Sciences, 8, 2067.

    CAS  Google Scholar 

  137. Ma, X., Xiang, Q., Lia, Y., Wen, T., & Zhang, H. (2018). Visible-light-driven CdSe quantum dots/graphene/TiO2 nanosheets composite with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation. Applied Surface Science, 457, 846–855.

    CAS  Google Scholar 

  138. Birben, N. C., Tomruk, A., & Bekbolet, M. (2017). The role of visible light active TiO2 specimens on the solar photocatalytic disinfection of E. coli. Environmental Science and Pollution Research, 24, 12618–12627.

    CAS  Google Scholar 

  139. Iqbal, T., Ali, F., Khalid, N. R., Tahir, M. B., & Ijaz, M. (2019). Facile synthesis and antimicrobial activity of CdS-Ag2S nanocomposites. Bioorganic Chemistry, 90, 103064.

    CAS  Google Scholar 

  140. Gao, Y., Mahmoudi, B., Fakhri, A., Aghazadeh, H., Hosseini, M., & Ebrahimi, H. A. (2019). Synthesis of MnO2/CdTiO3 nano-structure for high performance photocatalysis and antimicrobial application. Applied Organometallic Chemistry, 33, e5051.

    Google Scholar 

Download references

Acknowledgments

One of the authors, MS, gratefully acknowledges the Department of Science and Technology, Govt. of India, for the funding support through the DST-INSPIRE Faculty Award [DST/INSPIRE/04/2016/002227, 14-02-2017].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Shankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Divyasri, Y.V. et al. (2021). Nanostructures in Photocatalysis: Opportunities and Challenges for Environmental Applications. In: Balakumar, S., Keller, V., Shankar, M. (eds) Nanostructured Materials for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-72076-6_1

Download citation

Publish with us

Policies and ethics