Skip to main content

Modelling and Inferring the Triggering Function in a Self-Exciting Point Process

  • Conference paper
  • First Online:
Numerical Analysis and Optimization (NAO 2020)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 354))

Included in the following conference series:

  • 704 Accesses

Abstract

Self-exciting spatio-temporal point processes offer a flexible class of models that have found success in a range of applications. They involve a triggering effect that accounts for the clustering patterns observed in many natural and sociological applications. In this work, we focus on the key step of inferring or designing the form of the triggering function. In the inference setting, we use a nonparametric approach to fit a process to a range of datasets arising in criminology. By analysing this public domain data we find that the inferred trigger shape varies across different categories of crime. Motivated by these observations, and also by hypotheses from the criminology literature, we then propose a variation on the classical Epidemic-Type Aftershock Sequences trigger, which we call the Delayed Response trigger. After calibrating both parametric models, we show that Delayed Response is comparable with Epidemic-Type Aftershock Sequences in terms of predicting future events, and additionally provides an estimate of the time lag before the risk of triggering is maximised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some literature the temporal aspect of this triggering function is written in the equivalent form \(\alpha e^{-\beta t}\), with the interpretation that each arrival increases the intensity by \(\alpha \), with this influence decaying at rate \(\beta \) [14]. We use the form \(\alpha \omega e^{-\omega t}\) because it has the useful property that each event is expected to trigger \(\alpha \) events.

References

  1. Street and Site Plan Design Standards, City of Chicago. https://www.cityofchicago.org/dam/city/depts/cdot/StreetandSitePlanDesignStandards407.pdf, 2007. [Online; accessed 13-November-2018].

  2. City of Chicago Data Portal. https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2/data, 2016. [Online; accessed 20-November-2016].

  3. L. Bennett Moses and J. Chan. Algorithmic prediction in policing: assumptions, evaluation, and accountability. Policing and Society, 28(7):806–822, 2018.

    Google Scholar 

  4. H. Berestycki, S. Johnson, J. Ockendon, and M. Primicerio. Criminality. European Journal of Applied Mathematics, 21(4-5), 2010.

    Google Scholar 

  5. A. Bertozzi, S. Johnson, and M. Ward. Mathematical modelling of crime and security: Special issue of EJAM. European Journal of Applied Mathematics, 27(3):311–316, 2016.

    Article  MathSciNet  Google Scholar 

  6. A. A. Braga. The effects of hot spots policing on crime. The ANNALS of the American Academy of Political and Social Science, 578(1):104–125, 2001.

    Article  Google Scholar 

  7. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (methodological), pages 1–38, 1977.

    Google Scholar 

  8. J. E. Douglas, R. K. Ressler, A. W. Burgess, and C. R. Hartman. Criminal profiling from crime scene analysis. Behavioral Sciences & the Law, 4(4):401–421, 1986.

    Article  Google Scholar 

  9. M. Egesdal, C. Fathauer, K. Louie, J. Neuman, G. Mohler, and E. Lewis. Statistical and stochastic modeling of gang rivalries in Los Angeles. SIAM Undergraduate Research Online, 3:72–94, 2010.

    Article  Google Scholar 

  10. C. Gilmour. Self-exciting Point Processes and their Applications to Crime Data. PhD thesis, University of Strathclyde, 2019.

    Google Scholar 

  11. P. Grindrod. Mathematical Underpinnings of Analytics. Oxford University Press, 2015.

    Google Scholar 

  12. P. Hunt, J. Saunders, and J. S. Hollywood. Evaluation of the Shreveport predictive policing experiment. Rand Corporation, 2014.

    Google Scholar 

  13. T. Karppi. “The computer said so”: On the ethics, effectiveness, and cultural techniques of predictive policing. https://doi.org/10.1177.2056305118768296, May 2018. Social Media+ Society.

  14. P. J. Laub, T. Taimre, and P. K. Pollett. Hawkes processes. arXiv:1507.02822, 2015.

  15. E. Lewis, G. Mohler, P. J. Brantingham, and A. L. Bertozzi. Self-exciting point process models of civilian deaths in Iraq. Security Journal, 25(3):244–264, 2012.

    Article  Google Scholar 

  16. D. Marsan and O. Lengliné. Extending earthquakes’ reach through cascading. Science, 319(5866):1076–1079, 2008.

    Article  Google Scholar 

  17. A. Meijer and M. Wessels. Predictive policing: Review of benefits and drawbacks. International Journal of Public Administration, 42(12):1031–1039, 2019.

    Article  Google Scholar 

  18. G. Mohler. Marked point process hotspot maps for homicide and gun crime prediction in Chicago. International Journal of Forecasting, 30(3):491–497, 2014.

    Article  Google Scholar 

  19. G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and G. E. Tita. Self-exciting point process modeling of crime. Journal of the American Statistical Association, 106(493):100–108, 2011.

    Article  MathSciNet  Google Scholar 

  20. G. O. Mohler, M. B. Short, S. Malinowski, M. Johnson, G. E. Tita, A. L. Bertozzi, and P. J. Brantingham. Randomized controlled field trials of predictive policing. Journal of the American Statistical Association, 110(512):1399–1411, 2015.

    Article  MathSciNet  Google Scholar 

  21. Y. Ogata. Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83(401):9–27, 1988.

    Article  Google Scholar 

  22. N. Polvi, T. Looman, C. Humphries, and K. Pease. The time course of repeat burglary victimization. The British Journal of Criminology, 31(4):411–414, 1991.

    Article  Google Scholar 

  23. J. H. Ratcliffe, R. B. Taylor, A. P. Askey, K. Thomas, J. Grasso, K. J. Bethel, R. Fisher, and J. Koehnlein. The Philadelphia predictive policing experiment. Journal of Experimental Criminology, in press, 2020.

    Google Scholar 

  24. A. Reinhart. A review of self-exciting spatio-temporal point processes and their applications. Statistical Science, 33(3):299–318, 2018.

    MathSciNet  MATH  Google Scholar 

  25. A. Reinhart and J. Greenhouse. Self-exciting point processes with spatial covariates: modelling the dynamics of crime. Journal of the Royal Statistical Society: Series C (Applied Statistics), 67(5):1305–1329, 2018.

    MathSciNet  Google Scholar 

  26. S. Tench, H. Fry, and P. Gill. Spatio-temporal patterns of ied usage by the provisional Irish republican army. European Journal of Applied Mathematics, 27(3):377–402, 2016.

    Article  MathSciNet  Google Scholar 

  27. A. Veen and F. P. Schoenberg. Estimation of space–time branching process models in seismology using an em–type algorithm. Journal of the American Statistical Association, 103(482):614–624, 2008.

    Article  MathSciNet  Google Scholar 

  28. C. J. Wu. On the convergence properties of the EM algorithm. The Annals of Statistics, pages 95–103, 1983.

    Google Scholar 

  29. S. F. C. K. Zipkin, J. and A. Bertozzi. Point-process models of social network interactions: Parameter estimation and missing data recovery. European Journal of Applied Mathematics, 27, 2016.

    Google Scholar 

Download references

Acknowledgements

CG was supported by EPSRC Programme Grant EP/P020720/1. DJH was supported by grant EP/M00158X/1 from the EPSRC/RCUK Digital Economy Programme and by EPSRC Programme Grant EP/P020720/1. Illustrative R code may be downloaded from https://www.maths.ed.ac.uk/~dhigham/algfiles.html

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desmond J. Higham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gilmour, C., Higham, D.J. (2021). Modelling and Inferring the Triggering Function in a Self-Exciting Point Process. In: Al-Baali, M., Purnama, A., Grandinetti, L. (eds) Numerical Analysis and Optimization. NAO 2020. Springer Proceedings in Mathematics & Statistics, vol 354. Springer, Cham. https://doi.org/10.1007/978-3-030-72040-7_6

Download citation

Publish with us

Policies and ethics