Skip to main content

Stress Fracture Injuries in Sport

  • Chapter
  • First Online:
Fractures in Sport

Abstract

Stress fractures are fatigue fractures of bone, and result from an overuse mechanism. These injuries present most commonly in the legs and feet of long distance runners and military personnel, but can also occur in the upper extremity and the spine depending on the causative activity. Nutritional, hormonal, and biomechanical factors all contribute to the development of bony stress injuries, and no two stress fractures behave exactly alike. A detailed history, thorough physical examination, and proper imaging are required to diagnose and classify these injuries. The management of stress fractures requires nutritional and emotional support, rest from the causative activity, and at times surgical fixation. Recently developed biological treatment options may help to stabilize these injuries and stimulate more rapid healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaeding CC, Miller TL. The comprehensive description of stress fractures: a new classification system. J Bone Joint Surg. 2013;95(13):1214–20.

    Article  PubMed  Google Scholar 

  2. Kaeding CC, Yu JR, Wright R, et al. Management and return to play of stress fractures. Clin J Sports Med. 2005;15(6):442–7.

    Article  Google Scholar 

  3. Kaeding CC, Spindler KP, Amendola A. Management of troublesome stress fractures. Am Acad Orthop Surgeons Instr Course Lect. 2004;53:455–69.

    Google Scholar 

  4. Kaeding CC, Najarian R. Stress fractures—classification and management. Physician Sports Med. 2010;38(3):45–54.

    Article  Google Scholar 

  5. Boden BP, Osbahr DC, Jimenez C. Low-risk stress fractures. Am J Sports Med. 2001;29(1):100–11.

    Article  CAS  PubMed  Google Scholar 

  6. Boden BP. High-risk stress fractures: evaluation and treatment. J Am Acad Orthop Surg. 2000;8:344–53.

    Article  CAS  PubMed  Google Scholar 

  7. McInnis KC, Ramey LN. High-risk stress fractures: diagnosis and management. PMR. 2016;8(3 Suppl):S113–24.

    Article  Google Scholar 

  8. Lappe J, Cullen D, Haynatzki G, Recker R, Ahlf R, Thompson K. Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res. 2008;23(5):741–9.

    Article  CAS  PubMed  Google Scholar 

  9. Pouilles JM, Bernard J, Tremollières F, Louvet JP, Ribot C. Femoral bone density in young male adults with stress fractures. J Bone. 1989;10:105–8.

    Article  CAS  Google Scholar 

  10. Rettig AC, Shelbourne KD, McCarroll JR, Bisesi M, Watts J. The natural history and treatment of delayed union stress fractures of the anterior cortex of the tibia. Am J Sports Med. 1988;16(3):250–5.

    Article  CAS  PubMed  Google Scholar 

  11. Brukner P, Bennell K, Matheson G. Stress fractures of the trunk. In: Stress fractures. Victoria: Blackwell Science; 1999. p. 119–38.

    Google Scholar 

  12. Tenforde AS, Carlson JL, Chang A, Sainani KL, Shultz R, Kim JH, Cutti P, Golden NH, Fredericson M. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med. 2017;45(2):302–10.

    Article  PubMed  Google Scholar 

  13. Eller DJ, Katz DS, Bergman AG, et al. Sacral stress fractures in long-distance runners. Clin J Sports Med. 1997;7:222–5.

    Article  CAS  Google Scholar 

  14. Jones BH, Harris JM, Vinh TN, Rubin C. Exercise-induced stress fractures and stress reactions of bone: epidemiology, etiology, and classification. Exerc Sport Sci Rev. 1989;17:379–422.

    CAS  PubMed  Google Scholar 

  15. Jamieson M, Everson S, Siegel C, Miller TL. Expected time to return to athletic participation following stress fracture in Division I collegiate athletes. Sports Health. 2018;10(4):340–4.

    Article  PubMed  Google Scholar 

  16. Jamieson M, Schroeder A, Day J, et al. Time to return to running after tibial stress fracture in female Division I collegiate track and field. Curr Orthop Pract. 2017;31(4):393–7.

    Article  Google Scholar 

  17. Hosey RG, Fernandez MM, Johnson DL. Evaluation and management of stress fractures of the pelvis and sacrum. Orthopedics. 2008;31(4):383–5.

    Article  PubMed  Google Scholar 

  18. Krauss MR, Garvin NU, Boivin MR, Cowan DN. Excess stress fractures, musculoskeletal injuries, and health care utilization among unfit and overweight female army trainees. Am J Sports Med. 2017;45(2):311–6.

    Article  PubMed  Google Scholar 

  19. Miller TL, Harris JD, Kaeding CC. Stress fractures of the ribs and upper extremities: causation, evaluation, and management. Sports Med. 2013;43(8):665–74.

    Article  PubMed  Google Scholar 

  20. Bennell K, Brukner P. Epidemiology and site specificity of stress fractures. Clin Sports Med. 1997;16:179–96.

    Article  CAS  PubMed  Google Scholar 

  21. Miller TL, Best TM. Taking a holistic approach to managing difficult stress fractures. J Orthop Surg Res. 2016;11(1):98.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Toney CM, Games KE, Winkelmann ZK, Eberman LE. Using tuning-fork tests in diagnosing fractures. J Athl Train. 2016;51(6):498–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Coughlin MJ, Grimes JS, Traughber PD, Jones CP. Comparison of radiographs and CT scans in the prospective evaluation of the fusion of hindfoot arthrodesis. Foot Ankle Int. 2006;27(10):780–7.

    Article  PubMed  Google Scholar 

  24. Wall J, Feller JF. Imaging of stress fractures in runners. Clin Sports Med. 2006;25(4):781–802.

    Article  PubMed  Google Scholar 

  25. Brukner P, Bradshaw C, Khan KM, White S, Crossley K. Stress fractures: a review of 180 cases. Clin J Sports Med. 1996;6(2):85–9.

    Article  CAS  Google Scholar 

  26. Dobrindt O, Hoffmeyer B, Ruf J, Seidensticker M, Steffen IG, Zarva A, Fischbach F, Wieners G, Furth C, Lohmann CH, et al. MRI versus bone scintigraphy. Evaluation for diagnosis and grading of stress injuries. Nuklearmedizin. 2012;51(3):88–94.

    Article  CAS  PubMed  Google Scholar 

  27. Dutton J. Clinical value of grading the scintigraphic appearances of tibial stress fractures in military recruits. Clin Nucl Med. 2002;27(1):18–21.

    Article  PubMed  Google Scholar 

  28. Gaeta M, Minutoli F, Vinci S, Salamone I, D’Andrea L, Bitto L, Magaudda L, Blandino A. High-resolution CT grading of tibial stress reactions in distance runners. Am J Roentgenol. 2006;187:789–93.

    Article  Google Scholar 

  29. Bradshaw C, Khan K, Brukner P. Stress fracture of the body of the talus in athletes demonstrated with computer tomography. Clin J Sports Med. 1996;6:48–51.

    Article  CAS  Google Scholar 

  30. Standaert CJ. Spondylolysis in the adolescent athlete. Clin J Sport Med. 2002;12(2):119–22.

    Article  PubMed  Google Scholar 

  31. Arendt EA, Griffiths HJ. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med. 1997;16:291–306.

    Article  CAS  PubMed  Google Scholar 

  32. Papalada A, Malliaropoulos N, Tsitas K, Kiritsi O, Padhiar N, Del Buono A, Maffulli N. Ultrasound as a primary evaluation tool of bone stress injuries in elite track and field athletes. Am J Sports Med. 2012;40(4):915–9.

    Article  PubMed  Google Scholar 

  33. Miller T, Kaeding CC, Flanigan D. The classification systems of stress fractures: a systematic review. Phys Sportsmed. 2011;39(1):93–100.

    Article  PubMed  Google Scholar 

  34. Cabarrus MC, Ambekar A, Lu Y, Link TM. MRI and CT of insufficiency fractures of the pelvis and the proximal femur. AJR Am J Roentgenol. 2008;191(4):995–1001.

    Article  PubMed  Google Scholar 

  35. Jensen J. Stress fracture in the world class athlete: a case study. Med Sci Sports Exerc. 1998;30:783–7.

    CAS  PubMed  Google Scholar 

  36. Longhino V, Bonora C, Sansone V. The management of sacral stress fractures: current concepts. Clin Cases Miner Bone Metab. 2011;8(3):19–23.

    PubMed  PubMed Central  Google Scholar 

  37. Massar L, Caruso G, Sollazzo V, Setti S. Pulsed electromagnetic fields and low intensity pulsed ultrasound in bone tissue. Clin Cases Miner Bone Metab. 2009;6(2):149–54.

    Google Scholar 

  38. Martinez de Albornoz P, Khanna A, Longo UG, Forriol F, Maffulli N. The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing. Br Med Bull. 2011;100:39–57.

    Article  PubMed  Google Scholar 

  39. Malliaropoulos N, Alaseirlis D, Konstantinidis G, Papalada A, Tsifountoudis I, Petras K, Maffulli N. Therapeutic ultrasound in navicular stress injuries in elite track and field athletes. Clin J Sport Med. 2017;27(3):278–82.

    Article  PubMed  Google Scholar 

  40. Aspenberg P, Johansson T. Teriparatide improves early callus formation in distal radial fractures. Acta Orthop. 2010;81(2):234–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. O’Loughlin PF, Cunningham ME, Bukata SV, et al. Parathyroid hormone (1–34) augments spinal fusion, fusion mass volume, and fusion mass quality in a rabbit spinal fusion model. Spine. 2009;34(2):121–30.

    Article  PubMed  Google Scholar 

  42. Cohen SB, Sharkey PF. Subchondroplasty for the treating bone marrow lesions. J Knee Surg. 2016;29(7):555–63.

    PubMed  Google Scholar 

  43. Bonadio MB, Giglio PN, Helito CP, et al. Subchondroplasty for treating bone marrow lesions in the knee—initial experience. Rev Bras Ortop. 2017;52(3):325–30.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM. Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from the iliac crest, tibia, and calcaneus. J Bone Joint Surg Am. 2013;95(14):1312–6.

    Article  PubMed  Google Scholar 

  45. Murawski CD, Kennedy JG. Percutaneous internal fixation of proximal fifth metatarsal jones fractures (Zones II and III) with Charlotte Carolina screw and bone marrow aspirate concentrate: an outcome study in athletes. Am J Sports Med. 2011;39(6):1295–301.

    Article  PubMed  Google Scholar 

  46. Lee DH, Ryu KJ, Kim JW, Kang KC, Choi YR. Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res. 2014;472(12):3789–97.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jäger M, Jelinek EM, Wess KM, Scharfstädt A, Jacobson M, Kevy SV, Krauspe R. Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther. 2009;4(1):34–43.

    Article  PubMed  Google Scholar 

  48. Miller TL, Kaeding CC, Rodeo SA. Emerging options for biologic enhancement of stress fracture healing in athletes. J Am Acad Ortho Surg. 2020;28(1):1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy L. Miller .

Editor information

Editors and Affiliations

Review

Review

1.1 Questions

  1. 1.

    Which of the following levels of stress fracture progression is a normal part of homeostasis in healthy bone?

    1. (a)

      Crack initiation

    2. (b)

      Crack propagation

    3. (c)

      Complete or final fracture

    4. (d)

      Cumulative microtrauma

    5. (e)

      Insufficiency fracture

  2. 2.

    Which of the following sites is considered to be low risk for stress fracture progression?

    1. (a)

      Anterior tibial cortex

    2. (b)

      Dorsal navicular

    3. (c)

      Mid femoral diaphysis

    4. (d)

      Olecranon

    5. (e)

      Tension side femoral neck

  3. 3.

    Which of the following imaging modalities has the greatest specificity for identifying and grading stress fractures?

    1. (a)

      Bone Scintigraphy

    2. (b)

      CT scan

    3. (c)

      MRI

    4. (d)

      Plain radiographs

    5. (e)

      Ultrasound

1.2 Answers

  1. 1.

    a.

  2. 2.

    c.

  3. 3.

    c.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, T.L., Kaeding, C.C. (2021). Stress Fracture Injuries in Sport. In: Robertson, G.A.J., Maffulli, N. (eds) Fractures in Sport. Springer, Cham. https://doi.org/10.1007/978-3-030-72036-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72036-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72035-3

  • Online ISBN: 978-3-030-72036-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics