Skip to main content

Gene Therapy for Sjögren’s Syndrome

  • Chapter
  • First Online:
Sjögren's Syndrome and Oral Health
  • 484 Accesses

Abstract

Gene therapy has the potential to introduce a new approach to treating Sjögren’s syndrome. In the last 10 years, gene therapy has advanced from preclinical to approved drugs for a diverse set of conditions, including blindness, neurologic disease, and hemophilia. Many aspects of Sjögren’s syndrome are suited to current vectors and promoters. Preclinical studies in animal models of Sjögren’s syndrome have yielded promising results. In this chapter, we will review the current state of gene transfer technology, its applications, different aspects of vector systems applicable in Sjögren’s syndrome, relevant animal models for preclinical studies, and their outcomes as well as future directions for advancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baccaglini L, Shamsul Hoque AT, Wellner RB, Goldsmith CM, Redman RS, Sankar V, et al. Cationic liposome-mediated gene transfer to rat salivary epithelial cells in vitro and in vivo. J Gene Med. 2001;3(1):82–90.

    Article  PubMed  Google Scholar 

  2. Passineau MJ, Zourelias L, Machen L, Edwards PC, Benza RL. Ultrasound-assisted non-viral gene transfer to the salivary glands. Gene Ther. 2010;17(11):1318–24.

    Article  PubMed  Google Scholar 

  3. Geguchadze R, Wang Z, Zourelias L, Perez-Riveros P, Edwards PC, Machen L, et al. Proteomic profiling of salivary gland after nonviral gene transfer mediated by conventional plasmids and minicircles. Mol Ther Methods Clin Dev. 2014;1:14007.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science (New York, NY). 2015;348(6230):62–8.

    Article  Google Scholar 

  5. Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, et al. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017;4(2):43–63.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alevizos I, Zheng C, Cotrim AP, Liu S, McCullagh L, Billings ME, et al. Late responses to adenoviral-mediated transfer of the aquaporin-1 gene for radiation-induced salivary hypofunction. Gene Ther. 2017;24(3):176–86.

    Article  PubMed  Google Scholar 

  7. Voutetakis A, Kok MR, Zheng C, Bossis I, Wang J, Cotrim AP, et al. Reengineered salivary glands are stable endogenous bioreactors for systemic gene therapeutics. Proc Natl Acad Sci U S A. 2004;101(9):3053–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kok MR, Yamano S, Lodde BM, Wang J, Couwenhoven RI, Yakar S, et al. Local adeno-associated virus-mediated interleukin 10 gene transfer has disease-modifying effects in a murine model of Sjogren’s syndrome. Hum Gene Ther. 2003;14(17):1605–18.

    Article  PubMed  Google Scholar 

  9. Lai Z, Yin H, Cabrera-Perez J, Guimaro MC, Afione S, Michael DG, et al. Aquaporin gene therapy corrects Sjogren’s syndrome phenotype in mice. Proc Natl Acad Sci U S A. 2016;113(20):5694–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Di Pasquale G, Rivero P, Tora M, Swaim W, Sheikh T, Teos L, et al. Transduction of salivary gland acinar cells in rodents with adeno associated viral vectors results in persistent exocrine and endocrine release of recombinant proteins [abstract]. Mol Ther. 2015;23:S221.

    Article  Google Scholar 

  11. Taghian T, Marosfoi MG, Puri AS, Cataltepe OI, King RM, Diffie EB, et al. A safe and reliable technique for CNS delivery of AAV vectors in the cisterna magna. Mol Ther. 2020;28(2):411–21.

    Article  PubMed  Google Scholar 

  12. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med. 2006;12(3):342–7.

    Article  PubMed  Google Scholar 

  13. Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018;29(3):285–98.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hordeaux J, Hinderer C, Goode T, Buza EL, Bell P, Calcedo R, et al. Toxicology study of intra-cisterna magna adeno-associated virus 9 expressing iduronate-2-sulfatase in rhesus macaques. Mol Ther Methods Clin Dev. 2018;10:68–78.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hordeaux J, Hinderer C, Goode T, Katz N, Buza EL, Bell P, et al. Toxicology study of intra-cisterna magna adeno-associated virus 9 expressing human alpha-L-iduronidase in rhesus macaques. Mol Ther Methods Clin Dev. 2018;10:79–88.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Delporte C, Miller G, Kagami H, Lillibridge CD, O’Connell BC, Atkinson JC, et al. Safety of salivary gland-administered replication-deficient recombinant adenovirus in rats. J Oral Pathol Med. 1998;27(1):34–8.

    Article  PubMed  Google Scholar 

  17. Shan Z, Li J, Zheng C, Liu X, Fan Z, Zhang C, et al. Increased fluid secretion after adenoviral-mediated transfer of the human aquaporin-1 cDNA to irradiated miniature pig parotid glands. Mol Ther. 2005;11(3):444–51.

    Article  PubMed  Google Scholar 

  18. O’Connell AC, Baccaglini L, Fox PC, O’Connell BC, Kenshalo D, Oweisy H, et al. Safety and efficacy of adenovirus-mediated transfer of the human aquaporin-1 cDNA to irradiated parotid glands of non-human primates. Cancer Gene Ther. 1999;6(6):505–13.

    Article  PubMed  Google Scholar 

  19. Adesanya MR, Redman RS, Baum BJ, O’Connell BC. Immediate inflammatory responses to adenovirus-mediated gene transfer in rat salivary glands. Hum Gene Ther. 1996;7(9):1085–93.

    Article  PubMed  Google Scholar 

  20. O’Connell BC, Zheng C, Jacobson-Kram D, Baum BJ. Distribution and toxicity resulting from adenoviral vector administration to a single salivary gland in adult rats. J Oral Pathol Med. 2003;32(7):414–21.

    Article  PubMed  Google Scholar 

  21. Momot D, Zheng C, Yin H, Elbekai RH, Vallant M, Chiorini JA. Toxicity and biodistribution of the serotype 2 recombinant adeno-associated viral vector, encoding Aquaporin-1, after retroductal delivery to a single mouse parotid gland. PLoS One. 2014;9(3):e92832.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baum BJ, Alevizos I, Zheng C, Cotrim AP, Liu S, McCullagh L, et al. Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proc Natl Acad Sci U S A. 2012;109(47):19403–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zheng C, Nikolov NP, Alevizos I, Cotrim AP, Liu S, McCullagh L, et al. Transient detection of E1-containing adenovirus in saliva after the delivery of a first-generation adenoviral vector to human parotid gland. J Gene Med. 2010;12(1):3–10.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Odani T, Chiorini JA. Targeting primary Sjogren’s syndrome. Mod Rheumatol. 2019;29(1):70–86.

    Article  PubMed  Google Scholar 

  25. Gavin AL, Ait-Azzouzene D, Ware CF, Nemazee D. DeltaBAFF, an alternate splice isoform that regulates receptor binding and biopresentation of the B cell survival cytokine, BAFF. J Biol Chem. 2003;278(40):38220–8.

    Article  PubMed  Google Scholar 

  26. Evans RL, Park K, Turner RJ, Watson GE, Nguyen HV, Dennett MR, et al. Severe impairment of salivation in Na+/K+/2Cl- cotransporter (NKCC1)-deficient mice. J Biol Chem. 2000;275(35):26720–6.

    Article  PubMed  Google Scholar 

  27. Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, Uchida K, et al. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science (New York, NY). 2005;309(5744):2232–4.

    Article  Google Scholar 

  28. Gautam D, Duttaroy A, Cui Y, Han SJ, Deng C, Seeger T, et al. M1-M3 muscarinic acetylcholine receptor-deficient mice: novel phenotypes. J Mol Neurosci. 2006;30(1–2):157–60.

    Article  PubMed  Google Scholar 

  29. Krane CM, Melvin JE, Nguyen HV, Richardson L, Towne JE, Doetschman T, et al. Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J Biol Chem. 2001;276(26):23413–20.

    Article  PubMed  Google Scholar 

  30. Yin H, Kosa P, Liu X, Swaim WD, Lai Z, Cabrera-Perez J, et al. Matriptase deletion initiates a Sjogren’s syndrome-like disease in mice. PLoS One. 2014;9(2):e82852.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Miyazaki J, Takaki S, Araki K, Tashiro F, Tominaga A, Takatsu K, et al. Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene. 1989;79(2):269–77.

    Article  PubMed  Google Scholar 

  32. Dhungel B, Ramlogan-Steel CA, Steel JC. MicroRNA-regulated gene delivery systems for research and therapeutic purposes. Molecules. 2018;23(7):1500.

    Article  PubMed Central  Google Scholar 

  33. Harel L, Gefen N, Carmi O, Orbach P, Einat P, Abitbol G. Novel expression vectors enabling induction of gene expression by small-interfering RNAs and microRNAs. PLoS One. 2014;9(12):e115327.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zheng C, Baum BJ. Evaluation of viral and mammalian promoters for use in gene delivery to salivary glands. Mol Ther. 2005;12(3):528–36.

    Article  PubMed  Google Scholar 

  35. Zheng C, Baum BJ, Liu X, Goldsmith CM, Perez P, Jang SI, et al. Persistence of hAQP1 expression in human salivary gland cells following AdhAQP1 transduction is associated with a lack of methylation of hCMV promoter. Gene Ther. 2015;22(9):758–66.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pan RY, Xiao X, Chen SL, Li J, Lin LC, Wang HJ, et al. Disease-inducible transgene expression from a recombinant adeno-associated virus vector in a rat arthritis model. J Virol. 1999;73(4):3410–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Voulgarelis M, Tzioufas AG. Pathogenetic mechanisms in the initiation and perpetuation of Sjogren’s syndrome. Nat Rev Rheumatol. 2010;6(9):529–37.

    Article  PubMed  Google Scholar 

  38. Sandhya P, Kurien BT, Danda D, Scofield RH. Update on pathogenesis of Sjogren’s syndrome. Curr Rheumatol Rev. 2017;13(1):5–22.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chiorini JA, Cihakova D, Ouellette CE, Caturegli P. Sjogren syndrome: advances in the pathogenesis from animal models. J Autoimmun. 2009;33(3–4):190–6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peck AB, Nguyen CQ. What can Sjogren’s syndrome-like disease in mice contribute to human Sjogren’s syndrome? Clin Immunol. 2017;182:14–23.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Weller ML, Gardener MR, Bogus ZC, Smith MA, Astorri E, Michael DG, et al. Hepatitis delta virus detected in salivary glands of Sjogren’s syndrome patients and recapitulates a Sjogren’s syndrome-like phenotype in vivo. Pathog Immun. 2016;1(1):12–40.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bombardieri M, Barone F, Lucchesi D, Nayar S, van den Berg WB, Proctor G, et al. Inducible tertiary lymphoid structures, autoimmunity, and exocrine dysfunction in a novel model of salivary gland inflammation in C57BL/6 mice. J Immunol. 2012;189(7):3767–76.

    Article  PubMed  Google Scholar 

  43. Fleck M, Kern ER, Zhou T, Lang B, Mountz JD. Murine cytomegalovirus induces a Sjogren’s syndrome-like disease in C57Bl/6-lpr/lpr mice. Arthritis Rheum. 1998;41(12):2175–84.

    Article  PubMed  Google Scholar 

  44. Vosters JL, Landek-Salgado MA, Yin H, Swaim WD, Kimura H, Tak PP, et al. Interleukin-12 induces salivary gland dysfunction in transgenic mice, providing a new model of Sjogren’s syndrome. Arthritis Rheum. 2009;60(12):3633–41.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nguyen CQ, Yin H, Lee BH, Carcamo WC, Chiorini JA, Peck AB. Pathogenic effect of interleukin-17A in induction of Sjogren’s syndrome-like disease using adenovirus-mediated gene transfer. Arthritis Res Ther. 2010;12(6):R220.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nguyen CQ, Yin H, Lee BH, Chiorini JA, Peck AB. IL17: potential therapeutic target in Sjogren’s syndrome using adenovirus-mediated gene transfer. Lab Investig. 2011;91(1):54–62.

    Article  PubMed  Google Scholar 

  47. Guo Z, Li H, Han M, Xu T, Wu X, Zhuang Y. Modeling Sjogren’s syndrome with Id3 conditional knockout mice. Immunol Lett. 2011;135(1–2):34–42.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cheng KT, Alevizos I, Liu X, Swaim WD, Yin H, Feske S, et al. STIM1 and STIM2 protein deficiency in T lymphocytes underlies development of the exocrine gland autoimmune disease, Sjogren’s syndrome. Proc Natl Acad Sci U S A. 2012;109(36):14544–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fujikado N, Saijo S, Yonezawa T, Shimamori K, Ishii A, Sugai S, et al. Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat Med. 2008;14(2):176–80.

    Article  PubMed  Google Scholar 

  50. Shen L, Suresh L, Li H, Zhang C, Kumar V, Pankewycz O, et al. IL-14 alpha, the nexus for primary Sjogren’s disease in mice and humans. Clin Immunol. 2009;130(3):304–12.

    Article  PubMed  Google Scholar 

  51. Scofield RH, Henry WE, Kurien BT, James JA, Harley JB. Immunization with short peptides from the sequence of the systemic lupus erythematosus-associated 60-kDa Ro autoantigen results in anti-Ro ribonucleoprotein autoimmunity. J Immunol. 1996;156(10):4059–66.

    PubMed  Google Scholar 

  52. Szczerba BM, Kaplonek P, Wolska N, Podsiadlowska A, Rybakowska PD, Dey P, et al. Interaction between innate immunity and Ro52-induced antibody causes Sjogren’s syndrome-like disorder in mice. Ann Rheum Dis. 2016;75(3):617–22.

    Article  PubMed  Google Scholar 

  53. Iizuka M, Wakamatsu E, Tsuboi H, Nakamura Y, Hayashi T, Matsui M, et al. Pathogenic role of immune response to M3 muscarinic acetylcholine receptor in Sjogren’s syndrome-like sialadenitis. J Autoimmun. 2010;35(4):383–9.

    Article  PubMed  Google Scholar 

  54. Nishimori I, Bratanova T, Toshkov I, Caffrey T, Mogaki M, Shibata Y, et al. Induction of experimental autoimmune sialoadenitis by immunization of PL/J mice with carbonic anhydrase II. J Immunol. 1995;154(9):4865–73.

    PubMed  Google Scholar 

  55. Yin H, Vosters JL, Roescher N, D’Souza A, Kurien BT, Tak PP, et al. Location of immunization and interferon-gamma are central to induction of salivary gland dysfunction in Ro60 peptide immunized model of Sjogren’s syndrome. PLoS One. 2011;6(3):e18003.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yin H, Cabrera-Perez J, Lai Z, Michael D, Weller M, Swaim WD, et al. Association of bone morphogenetic protein 6 with exocrine gland dysfunction in patients with Sjogren’s syndrome and in mice. Arthritis Rheum. 2013;65(12):3228–38.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Blessing M, Schirmacher P, Kaiser S. Overexpression of bone morphogenetic protein-6 (BMP-6) in the epidermis of transgenic mice: inhibition or stimulation of proliferation depending on the pattern of transgene expression and formation of psoriatic lesions. J Cell Biol. 1996;135(1):227–39.

    Article  PubMed  Google Scholar 

  58. Yin H, Kalra L, Lai Z, Guimaro MC, Aber L, Warner BM, et al. Inhibition of bone morphogenetic protein 6 receptors ameliorates Sjogren’s syndrome in mice. Sci Rep. 2020;10(1):2967.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nguyen C, Cornelius J, Singson E, Killedar S, Cha S, Peck AB. Role of complement and B lymphocytes in Sjogren’s syndrome-like autoimmune exocrinopathy of NOD.B10-H2b mice. Mol Immunol. 2006;43(9):1332–9.

    Article  PubMed  Google Scholar 

  60. Cha S, Nagashima H, Brown VB, Peck AB, Humphreys-Beher MG. Two NOD Idd-associated intervals contribute synergistically to the development of autoimmune exocrinopathy (Sjogren’s syndrome) on a healthy murine background. Arthritis Rheum. 2002;46(5):1390–8.

    Article  PubMed  Google Scholar 

  61. Lodde BM, Mineshiba F, Kok MR, Wang J, Zheng C, Schmidt M, et al. NOD mouse model for Sjogren’s syndrome: lack of longitudinal stability. Oral Dis. 2006;12(6):566–72.

    Article  PubMed  Google Scholar 

  62. Nguyen C, Singson E, Kim JY, Cornelius JG, Attia R, Doyle ME, et al. Sjogren’s syndrome-like disease of C57BL/6.NOD-Aec1 Aec2 mice: gender differences in keratoconjunctivitis sicca defined by a cross-over in the chromosome 3 Aec1 locus. Scand J Immunol. 2006;64(3):295–307.

    Article  PubMed  Google Scholar 

  63. Nguyen CQ, Sharma A, Lee BH, She JX, McIndoe RA, Peck AB. Differential gene expression in the salivary gland during development and onset of xerostomia in Sjogren’s syndrome-like disease of the C57BL/6.NOD-Aec1Aec2 mouse. Arthritis Res Ther. 2009;11(2):R56.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yamano S, Huang LY, Ding C, Chiorini JA, Goldsmith CM, Wellner RB, et al. Recombinant adeno-associated virus serotype 2 vectors mediate stable interleukin 10 secretion from salivary glands into the bloodstream. Hum Gene Ther. 2002;13(2):287–98.

    Article  PubMed  Google Scholar 

  65. Yin H, Nguyen CQ, Samuni Y, Uede T, Peck AB, Chiorini JA. Local delivery of AAV2-CTLA4IgG decreases sialadenitis and improves gland function in the C57BL/6.NOD-Aec1Aec2 mouse model of Sjogren’s syndrome. Arthritis Res Ther. 2012;14(1):R40.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Vosters JL, Yin H, Roescher N, Kok MR, Tak PP, Chiorini JA. Local expression of tumor necrosis factor-receptor 1:immunoglobulin G can induce salivary gland dysfunction in a murine model of Sjogren’s syndrome. Arthritis Res Ther. 2009;11(6):R189.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fisher BZM, Ng W, Bombardieri M, Posch M, Papas A, et al. The novel anti-CD40 monoclonal antibody CFZ533 shows beneficial effects in patients with primary Sjögren’s syndrome: a phase IIa double-blind, placebo-controlled randomized trial [abstract]. Arthritis Rheumatol. 2017;69:10.

    Google Scholar 

  68. Illei G. Clinical investigations of Sjogren’s syndrome [Grant application]; 2009.

    Google Scholar 

  69. Batten M, Li J, Yi S, Kljavin NM, Danilenko DM, Lucas S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol. 2006;7(9):929–36.

    Article  PubMed  Google Scholar 

  70. Gross JA, Dillon SR, Mudri S, Johnston J, Littau A, Roque R, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity. 2001;15(2):289–302.

    Article  PubMed  Google Scholar 

  71. Vervoordeldonk MJ, Tak PP. Cytokines in rheumatoid arthritis. Curr Rheumatol Rep. 2002;4(3):208–17.

    Article  PubMed  Google Scholar 

  72. Delporte C, O’Connell BC, He X, Lancaster HE, O’Connell AC, Agre P, et al. Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc Natl Acad Sci U S A. 1997;94(7):3268–73.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fox RI, Kang HI, Ando D, Abrams J, Pisa E. Cytokine mRNA expression in salivary gland biopsies of Sjogren’s syndrome. J Immunol. 1994;152(11):5532–9.

    PubMed  Google Scholar 

  74. Mariette X, Ravaud P, Steinfeld S, Baron G, Goetz J, Hachulla E, et al. Inefficacy of infliximab in primary Sjogren’s syndrome: results of the randomized, controlled trial of remicade in primary Sjogren’s syndrome (TRIPSS). Arthritis Rheum. 2004;50(4):1270–6.

    Article  PubMed  Google Scholar 

  75. Zandbelt MM, de Wilde P, van Damme P, Hoyng CB, van de Putte L, van den Hoogen F. Etanercept in the treatment of patients with primary Sjogren’s syndrome: a pilot study. J Rheumatol. 2004;31(1):96–101.

    PubMed  Google Scholar 

  76. Sankar V, Brennan MT, Kok MR, Leakan RA, Smith JA, Manny J, et al. Etanercept in Sjogren’s syndrome: a twelve-week randomized, double-blind, placebo-controlled pilot clinical trial. Arthritis Rheum. 2004;50(7):2240–5.

    Article  PubMed  Google Scholar 

  77. Cutolo M, Soldano S, Montagna P, Sulli A, Seriolo B, Villaggio B, et al. CTLA4-Ig interacts with cultured synovial macrophages from rheumatoid arthritis patients and downregulates cytokine production. Arthritis Res Ther. 2009;11(6):R176.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Downie-Doyle S, Bayat N, Rischmueller M, Lester S. Influence of CTLA4 haplotypes on susceptibility and some extraglandular manifestations in primary Sjogren’s syndrome. Arthritis Rheum. 2006;54(8):2434–40.

    Article  PubMed  Google Scholar 

  79. Perkins D, Wang Z, Donovan C, He H, Mark D, Guan G, et al. Regulation of CTLA-4 expression during T cell activation. J Immunol. 1996;156(11):4154–9.

    PubMed  Google Scholar 

  80. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423(6939):506–11.

    Article  PubMed  Google Scholar 

  81. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192(2):303–10.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27.

    Article  PubMed  Google Scholar 

  83. Matsumura R, Umemiya K, Goto T, Nakazawa T, Kagami M, Tomioka H, et al. Glandular and extraglandular expression of costimulatory molecules in patients with Sjogren’s syndrome. Ann Rheum Dis. 2001;60(5):473–82.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med. 2005;353(11):1114–23.

    Article  PubMed  Google Scholar 

  85. Adler S, Korner M, Forger F, Huscher D, Caversaccio MD, Villiger PM. Evaluation of histologic, serologic, and clinical changes in response to abatacept treatment of primary Sjogren’s syndrome: a pilot study. Arthritis Care Res. 2013;65(11):1862–8.

    Article  Google Scholar 

  86. Roescher N, Lodde BM, Vosters JL, Tak PP, Catalan MA, Illei GG, et al. Temporal changes in salivary glands of non-obese diabetic mice as a model for Sjogren’s syndrome. Oral Dis. 2012;18(1):96–106.

    Article  PubMed  Google Scholar 

  87. Roescher N, Vosters JL, Lai Z, Uede T, Tak PP, Chiorini JA. Local administration of soluble CD40:Fc to the salivary glands of non-obese diabetic mice does not ameliorate autoimmune inflammation. PLoS One. 2012;7(12):e51375.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kapsogeorgou EK, Manoussakis MN. Salivary gland epithelial cells (SGEC): carriers of exquisite B7-2 (CD86) costimulatory molecules. J Autoimmun. 2010;35(3):188–91.

    Article  PubMed  Google Scholar 

  89. Roescher N, Vosters JL, Yin H, Illei GG, Tak PP, Chiorini JA. Effect of soluble ICAM-1 on a Sjogren’s syndrome-like phenotype in NOD mice is disease stage dependent. PLoS One. 2011;6(5):e19962.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nguyen CQ, Hu MH, Li Y, Stewart C, Peck AB. Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjogren’s syndrome: findings in humans and mice. Arthritis Rheum. 2008;58(3):734–43.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lee BH, Carcamo WC, Chiorini JA, Peck AB, Nguyen CQ. Gene therapy using IL-27 ameliorates Sjogren’s syndrome-like autoimmune exocrinopathy. Arthritis Res Ther. 2012;14(4):R172.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yang J, Yang M, Htut TM, Ouyang X, Hanidu A, Li X, et al. Epstein-Barr virus-induced gene 3 negatively regulates IL-17, IL-22 and RORgamma t. Eur J Immunol. 2008;38(5):1204–14.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dillon SR, Gross JA, Ansell SM, Novak AJ. An APRIL to remember: novel TNF ligands as therapeutic targets. Nat Rev. 2006;5(3):235–46.

    Google Scholar 

  94. Ittah M, Miceli-Richard C, Gottenberg JE, Sellam J, Eid P, Lebon P, et al. Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR- and type-I IFN-dependent and -independent pathways. Eur J Immunol. 2008;38(4):1058–64.

    Article  PubMed  Google Scholar 

  95. Mariette X, Roux S, Zhang J, Bengoufa D, Lavie F, Zhou T, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren’s syndrome. Ann Rheum Dis. 2003;62(2):168–71.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lavie F, Miceli-Richard C, Ittah M, Sellam J, Gottenberg JE, Mariette X. Increase of B cell-activating factor of the TNF family (BAFF) after rituximab treatment: insights into a new regulating system of BAFF production. Ann Rheum Dis. 2007;66(5):700–3.

    Article  PubMed  Google Scholar 

  97. Mariette X, Seror R, Quartuccio L, Baron G, Salvin S, Fabris M, et al. Efficacy and safety of belimumab in primary Sjogren’s syndrome: results of the BELISS open-label phase II study. Ann Rheum Dis. 2015;74(3):526–31.

    Article  PubMed  Google Scholar 

  98. Roescher N, Vosters JL, Alsaleh G, Dreyfus P, Jacques S, Chiocchia G, et al. Targeting the splicing of mRNA in autoimmune diseases: BAFF inhibition in Sjogren’s syndrome as a proof of concept. Mol Ther. 2014;22(4):821–7.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Vosters JL, Roescher N, Illei GG, Chiorini JA, Tak PP. TACI-Fc gene therapy improves autoimmune sialadenitis but not salivary gland function in non-obese diabetic mice. Oral Dis. 2012;18(4):365–74.

    Article  PubMed  Google Scholar 

  100. Yin H, Cheng H, Yu M, Zhang F, Lin J, Gao Y, et al. Vasoactive intestinal peptide ameliorates synovial cell functions of collagen-induced arthritis rats by down-regulating NF-kappaB activity. Immunol Investig. 2005;34(2):153–69.

    Article  Google Scholar 

  101. Lodde BM, Mineshiba F, Wang J, Cotrim AP, Afione S, Tak PP, et al. Effect of human vasoactive intestinal peptide gene transfer in a murine model of Sjogren’s syndrome. Ann Rheum Dis. 2006;65(2):195–200.

    Article  PubMed  Google Scholar 

  102. Gao R, Yan X, Zheng C, Goldsmith CM, Afione S, Hai B, et al. AAV2-mediated transfer of the human aquaporin-1 cDNA restores fluid secretion from irradiated miniature pig parotid glands. Gene Ther. 2011;18(1):38–42.

    Article  PubMed  Google Scholar 

  103. Baum BJ, Zheng C, Cotrim AP, Goldsmith CM, Atkinson JC, Brahim JS, et al. Transfer of the AQP1 cDNA for the correction of radiation-induced salivary hypofunction. Biochim Biophys Acta. 2006;1758(8):1071–7.

    Article  PubMed  Google Scholar 

  104. Alevizos I, Zheng C, Cotrim AP, Goldsmith CM, McCullagh L, Berkowitz T, et al. Immune reactivity after adenoviral-mediated aquaporin-1 cDNA transfer to human parotid glands. Oral Dis. 2017;23(3):337–46.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Liu X, Bandyopadhyay BC, Nakamoto T, Singh B, Liedtke W, Melvin JE, et al. A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem. 2006;281(22):15485–95.

    Article  PubMed  Google Scholar 

  106. Michael DG, Pranzatelli TJF, Warner BM, Yin H, Chiorini JA. Integrated epigenetic mapping of human and mouse salivary gene regulation. J Dent Res. 2019;98(2):209–17.

    Article  PubMed  Google Scholar 

  107. Wang Z, Pradhan-Bhatt S, Farach-Carson MC, Passineau MJ. Artificial induction of native Aquaporin-1 expression in human salivary cells. J Dent Res. 2017;96(4):444–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Chiorini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, H., Chiorini, J.A. (2021). Gene Therapy for Sjögren’s Syndrome. In: Cha, S. (eds) Sjögren's Syndrome and Oral Health. Springer, Cham. https://doi.org/10.1007/978-3-030-72029-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72029-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72028-5

  • Online ISBN: 978-3-030-72029-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics