Skip to main content

Estimating a Set of Pure XANES Spectra from Multicomponent Chemical Mixtures Using a Transformation Matrix-Based Approach

  • Conference paper
  • First Online:
Synchrotron Radiation Science and Applications

Abstract

In this work, we propose a new method for the analysis of time-resolved X-ray absorption near edge structure (XANES) spectra. It allows to decompose an experimental dataset as the product of two matrices: a pure spectral matrix, composed by XANES spectra associable to well-defined chemical species/sites, and their related concentration profiles. This method combines the principal component analysis and the application of a transformation matrix whose elements are directly accessible by the user. We demonstrate the potential of this approach applying it to a series of XANES spectra acquired during the direct conversion of methane to methanol (DMTM) over a Cu-exchanged zeolite characterized by the ferrierite topology. Possibilities and limitations of this methodology are discussed together with a critical comparison with the Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) algorithm that, in the field of X-ray absorption spectroscopy (XAS), is imposing itself as a widely used method for spectral decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Smolentsev, G. Guilera, M. Tromp, S. Pascarelli, A.V. Soldatov, Local structure of reaction intermediates probed by time-resolved X-ray absorption near edge structure spectroscopy. J. Chem. Phys. 130, 9 (2009)

    Article  Google Scholar 

  2. D.K. Pappas, E. Borfecchia, M. Dyballa, I.A. Pankin, K.A. Lomachenko, A. Martini, M. Signorile, S. Teketel, B. Arstad, G. Berlier, C. Lamberti, S. Bordiga, U. Olsbye, K.P. Lillerud, S. Svelle, P. Beato, Methane to methanol: structure activity relationships for Cu-CHA. J. Am. Chem. Soc. 139, 14961–14975 (2017)

    Article  Google Scholar 

  3. T. Ressler, WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J. Synchrotron Radiat. 5, 118–122 (1998)

    Article  Google Scholar 

  4. Q. Wang, J.C. Hanson, A.I. Frenkel, Solving the structure of reaction intermediates by time-resolved synchrotron X-ray absorption spectroscopy. J. Chem. Phys. 129, 7 (2008)

    Google Scholar 

  5. S.M. Webb, SIXpack: a graphical user interface for XAS analysis using IFEFFIT. Phys. Scr. T115:1011–1014 (2005)

    Google Scholar 

  6. J. Jaumot, R. Gargallo, A. de Juan, R. Tauler, A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB. Chemometr. Intell. Lab. Syst. 76, 101–110 (2005)

    Article  Google Scholar 

  7. R. Tauler, Multivariate curve resolution applied to second order data. Chemometr. Intell. Lab. Syst. 30, 133–146 (1995)

    Article  Google Scholar 

  8. P. Conti, S. Zamponi, M. Giorgetti, M. Berrettoni, W.H. Smyrl, Multivariate curve resolution analysis for interpretation of dynamic Cu K-edge X-ray absorption spectroscopy spectra for a Cu doped V2O5 lithium battery. Anal. Chem. 82, 3629–3635 (2010)

    Article  Google Scholar 

  9. B.L. Caetano, V. Briois, S.H. Pulcinelli, F. Meneau, C.V. Santilli, Revisiting the ZnO Q-dot formation toward an integrated growth model: from coupled time resolved UV–Vis/SAXS/XAS data to multivariate analysis. J. Phys. Chem. C 121, 886–895 (2017)

    Article  Google Scholar 

  10. H.W.P. Carvalho, S.H. Pulcinelli, C.V. Santilli, F. Leroux, F. Meneau, V. Briois, XAS/WAXS time-resolved phase speciation of chlorine LDH thermal transformation: emerging roles of isovalent metal substitution. Chem. Mat. 25, 2855–2867 (2013)

    Article  Google Scholar 

  11. W.H. Cassinelli, L. Martins, A.R. Passos, S.H. Pulcinelli, C.V. Santilli, A. Rochet, V. Briois, Multivariate curve resolution analysis applied to time-resolved synchrotron X-ray Absorption Spectroscopy monitoring of the activation of copper alumina catalyst. Catal. Today 229, 114–122 (2014)

    Article  Google Scholar 

  12. J.P. Hong, E. Marceau, A.Y. Khodakov, L. Gaberova, A. Griboval-Constant, J.S. Girardon, C. La Fontaine, V. Briois, Speciation of ruthenium as a reduction promoter of silica-supported Co catalysts: a time-resolved in situ XAS investigation. ACS Catal. 5, 1273–1282 (2015)

    Article  Google Scholar 

  13. A. Rochet, B. Baubet, V. Moizan, E. Devers, A. Hugon, C. Pichon, E. Payen, V. Briois, Intermediate species revealed during sulfidation of bimetallic hydrotreating catalyst: a multivariate analysis of combined time-resolved spectroscopies. J. Phys. Chem. C 121, 18544–18556 (2017)

    Article  Google Scholar 

  14. A. Voronov, A. Urakawa, W.V. Beek, N.E. Tsakoumis, H. Emerich, M. Rønning, Multivariate curve resolution applied to in situ X-ray absorption spectroscopy data: an efficient tool for data processing and analysis. Anal. Chim. Acta 840:20–27 (2014)

    Google Scholar 

  15. A. Martini, E. Alladio, E. Borfecchia, Determining Cu-speciation in the Cu-CHA zeolite catalyst: the potential of multivariate curve resolution analysis of in situ XAS data. Top. Catal. 61, 1396–1407 (2018)

    Article  Google Scholar 

  16. A.L. Bugaev, O.A. Usoltsev, A.A. Guda, K.A. Lomachenko, I.A. Pankin, Y.V. Rusalev, H. Emerich, E. Groppo, R. Pellegrini, A.V. Soldatov, J.A. van Bokhoven, C. Lamberti, Palladium carbide and hydride formation in the bulk and at the surface of palladium nanoparticles. J. Phys. Chem. C 122, 12029–12037 (2018)

    Article  Google Scholar 

  17. A.A. Guda, A.L. Bugaev, R. Kopelent, L. Braglia, A.V. Soldatov, M. Nachtegaal, O.V. Safonova, G. Smolentsev, Fluorescence-detected XAS with sub-second time resolution reveals new details about the redox activity of Pt/CeO2 catalyst. J. Synchrot. Radiat. 25, 989–997 (2018)

    Article  Google Scholar 

  18. A. Martini, S.A. Guda, A.A. Guda, G. Smolentsev, A. Algasov, O. Usoltsev, M.A. Soldatov, A. Bugaev, Y. Rusalev, C. Lamberti, A.V. Soldatov, PyFitit: the software for quantitative analysis of XANES spectra using machine-learning algorithms. Comput. Phys. Commun. 107064 (2019)

    Google Scholar 

  19. C. Ruckebusch, Resolving Spectral Mixtures: With Applications from Ultrafast Time-Resolved Spectroscopy to Super-Resolution Imaging (Elsevier, Amsterdam, 2016)

    Google Scholar 

  20. J. Timoshenko, A.I. Frenkel, “Inverting” X-ray absorption spectra of catalysts by machine learning in search for activity descriptors. ACS Catal. 9, 10192–10211 (2019)

    Google Scholar 

  21. I. Markovsky, Structured low-rank approximation and its applications. Automatica 44, 891–909 (2008)

    Article  MathSciNet  Google Scholar 

  22. S. Calvin, XAFS for Everyone (CRC Press, Boca Raton, 2013)

    Google Scholar 

  23. P.M. Abdala, O.V. Safonova, G. Wiker, W. van Beek, H. Emerich, J.A. van Bokhoven, J. Sa, J. Szlachetko, M. Nachtegaal, Scientific opportunities for heterogeneous catalysis research at the SuperXAS and SNBL beam lines. Chimia 66, 699–705 (2012)

    Article  Google Scholar 

  24. D.K. Pappas, E. Borfecchia, K.A. Lomachenko, A. Lazzarini, E.S. Gutterod, M. Dyballa, A. Martini, G. Berlier, S. Bordiga, C. Lamberti, B. Arstad, U. Olsbye, P. Beato, S. Svelle, Cu-exchanged ferrierite zeolite for the direct CH4 to CH3OH conversion: insights on Cu speciation from X-ray absorption spectroscopy. Top. Catal. 62, 712–723 (2019)

    Article  Google Scholar 

  25. B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005)

    Article  Google Scholar 

  26. K.A. Lomachenko, A. Martini, D.K. Pappas, C. Negri, M. Dyballa, G. Berlier, S. Bordiga, C. Lamberti, U. Olsbye, S. Svelle, P. Beato, E. Borfecchia, The impact of reaction conditions and material composition on the stepwise methane to methanol conversion over Cu-MOR: an operando XAS study. Catal. Today 336, 99–108 (2019)

    Article  Google Scholar 

  27. M. Giorgetti, S. Mukerjee, S. Passerini, J. McBreen, W.H. Smyrl, Evidence for reversible formation of metallic Cu in Cu0.1V2O5 xerogel cathodes during intercalation cycling of Li+ ions as detected by X-ray absorption spectroscopy. J. Electrochem. Soc. 148, A768–A774 (2001)

    Google Scholar 

  28. E.R. Malinowski, Factor Analysis in Chemistry (Wiley, Hoboken, 2002)

    Google Scholar 

  29. E.M.C. Alayon, M. Nachtegaal, A. Bodi, J.A. van Bokhoven, Reaction conditions of methane-to-methanol conversion affect the structure of active copper sites. ACS Catal. 4, 16–22 (2014)

    Article  Google Scholar 

  30. A. Martini, I.A. Pankin, A. Marsicano, K.A. Lomachenko, E. Borfecchia, Wavelet analysis of a Cu-oxo zeolite EXAFS simulated spectrum. Radiat. Phys. Chem. 108333 (2019)

    Google Scholar 

  31. I.A. Pankin, A. Martini, K.A. Lomachenko, A.V. Soldatov, S. Bordiga, E. Borfecchia, Identifying Cu-oxo species in Cu-zeolites by XAS: a theoretical survey by DFT-assisted XANES simulation and EXAFS wavelet transform. Catal. Today (2019)

    Google Scholar 

  32. D.K. Pappas, A. Martini, M. Dyballa, K. Kvande, S. Teketel, K.A. Lomachenko, R. Baran, P. Glatzel, B. Arstad, G. Berlier, C. Lamberti, S. Bordiga, U. Olsbye, S. Svelle, P. Beato, E. Borfecchia, The nuclearity of the active site for methane to methanol conversion in Cu-mordenite: a quantitative assessment. J. Am. Chem. Soc. 140, 15270–15278 (2018)

    Article  Google Scholar 

  33. K. Sasaki, S. Kawata, S. Minami, Constrained nonlinear method for estimating component spectra from multicomponent mixtures. Appl. Opt. 22, 3599–3603 (1983)

    Article  ADS  Google Scholar 

  34. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  35. R. Tauler, Calculation of maximum and minimum band boundaries of feasible solutions for species profiles obtained by multivariate curve resolution. J. Chemometr. 15, 627–646 (2001)

    Article  Google Scholar 

  36. D. Kraft, A Software Package for Sequential Quadratic Programming (DFVLR, Köln, 1988)

    Google Scholar 

  37. A.C. Olivieri, R. Tauler, The effect of data matrix augmentation and constraints in extended multivariate curve resolution-alternating least squares. J. Chemometr. 31, 10 (2017)

    Article  Google Scholar 

  38. C.H. Camp, pyMCR: a python library for multivariate curve resolution analysis with alternating regression (MCR-AR). J. Res. Natl. Inst. Stand. Technol. 124, 10 (2019)

    Article  Google Scholar 

  39. A.A. Guda, S.A. Guda, K.A. Lomachenko, M.A. Soldatov, I.A. Pankin, A.V. Soldatov, L. Braglia, A.L. Bugaev, A. Martini, M. Signorile, E. Groppo, A. Piovano, E. Borfecchia, C. Lamberti, Quantitative structural determination of active sites from in situ and operando XANES spectra: from standard ab initio simulations to chemometric and machine learning approaches. Catal. Today 336, 3–21 (2019)

    Article  Google Scholar 

  40. M. Maeder, Evolving factor-analysis for the resolution of overlapping chromatographic peaks. Anal. Chem. 59, 527–530 (1987)

    Article  Google Scholar 

  41. W. Windig, J. Guilment, Interactive self-modeling mixture analysis. Anal. Chem. 63, 1425–1432 (1991)

    Article  Google Scholar 

  42. A. Martini, E. Borfecchia, K.A. Lomachenko, I.A. Pankin, C. Negri, G. Berlier, P. Beato, H. Falsig, S. Bordiga, C. Lamberti, Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. Chem. Sci. 8, 6836–6851 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

AAG and SAG acknowledge the Russian Foundation for Basic Research (project № 20-32-70227) for the financial support. We are grateful to D. Pappas (University of Oslo) for the fruitful discussions about the chemical interpretation of the results obtained using the approach described in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Martini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martini, A. et al. (2021). Estimating a Set of Pure XANES Spectra from Multicomponent Chemical Mixtures Using a Transformation Matrix-Based Approach. In: Di Cicco, A., Giuli, G., Trapananti, A. (eds) Synchrotron Radiation Science and Applications. Springer Proceedings in Physics, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-030-72005-6_6

Download citation

Publish with us

Policies and ethics