Skip to main content

Structural Properties of Porous Silicon Nanowires: A Combined Characterization by Advanced Spectroscopic Techniques

  • Conference paper
  • First Online:
Synchrotron Radiation Science and Applications

Abstract

Advanced characterization techniques including synchrotron radiation have been used to investigate the structural and electronic properties of doped silicon nanowires (NWs). Si L-edge, O K-edge and F K-edge XAS (x-ray absorption spectroscopy) spectra of silicon NWs at different doping levels have been collected at the BEAR beamline of the ELETTRA synchrotron radiation facility. XAS results show that the NWs structures are modified changing the type and level of doping and by the etching process. Optical Raman spectroscopy of NWs shows shifted and broadened first order optical mode, corresponding to a decrease in size of the crystallite domains inside the nanowires. The observed Raman shifts are compatible with the occurrence of a larger crystallite size in p-type NWs and smaller one in n-type NWs, in line with XAS results. Fabricated low-doped p-type NWs were also pressurized up to 24 GPa in a diamond anvil cell at room temperature and Raman scattering was recorded at selected pressures. The Si diamond crystal structure (dc-Si) is observed to persist up to \(\sim \) 22 GPa, much higher than the phase transition onset (\(\sim \) 11 GPa) occurring in bulk silicon in the same experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57(10), 1046–48 (1990)

    Article  ADS  Google Scholar 

  2. Z. Kang, C. Tsang, N. Wong, Z. Zhang, S. Lee, Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J. Am. Chem. Soc. 129(40), 12090–12091 (2007)

    Article  Google Scholar 

  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, F. Priolo, Optical Gain in Silicon Nanocrystals 408(6811), 440–444 (2000)

    Google Scholar 

  4. V. Lehmann, U. Gosele, Porous silicon formation: a quantum wire effect. Appl. Phys. Lett. 58, 856–858 (1991)

    Article  ADS  Google Scholar 

  5. S. Borini, L. Boarino, G. Amato, Coulomb blockade tuned by NO2 molecules in nanostructured silicon. Adv. Mater. (2006). https://doi.org/10.1002/adma.200600198

  6. A. Loni, T. Defforge, E. Caffull, G. Gautier, L. Canham, Porous silicon fabrication by anodisation: progress towards the realisation of layers and powders with high surface area and micropore content. Microporous Mesoporous Mater. 213, 188–191 (2015)

    Article  Google Scholar 

  7. S. Carturan, G. Maggioni, S. Rezvani, R. Gunnella, N. Pinto, M. Gelain, D. Napoli, Wet chemical treatments of high purity Ge crystals for \(\gamma \)-ray detectors: Surface structure, passivation capabilities and air stability. Mater. Chem. Phys. 161, 116–122 (2015). https://doi.org/10.1016/j.matchemphys.2015.05.022. https://linkinghub.elsevier.com/retrieve/pii/S0254058415300821

  8. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89 (1964)

    Article  ADS  Google Scholar 

  9. N. Pinto, S.J. Rezvani, L. Favre, I. Berbezier, M. Fretto, L. Boarino, Geometrically induced electron-electron interaction in semiconductor nanowires. Appl. Phys. Lett. (2016). https://doi.org/10.1063/1.4962893

  10. S.J. Rezvani, R. Gunnella, D. Neilson, L. Boarino, L. Croin, G. Aprile, M. Fretto, P. Rizzi, D. Antonioli, N. Pinto, Effect of carrier tunneling on the structure of Si nanowires fabricated by metal assisted etching. Nanotechnology (2016). https://doi.org/10.1088/0957-4484/27/34/345301

  11. S.J. Rezvani, N. Pinto, L. Boarino, Rapid formation of single crystalline Ge nanowires by anodic metal assisted etching. CrystEngComm 18(40), 7843–7848 (2016). https://doi.org/10.1039/C6CE01598K

    Article  Google Scholar 

  12. S.J. Rezvani, N. Pinto, L. Boarino, F. Celegato, L. Favre, I. Berbezier, Diffusion induced effects on geometry of Ge nanowires. Nanoscale 6(13), 7469–7473 (2014). https://doi.org/10.1039/C4NR01084A

    Article  ADS  Google Scholar 

  13. S.J. Rezvani, L. Favre, F. Celegato, L. Boarino, I. Berbezier, N. Pinto, Supersaturation state effect in diffusion induced Ge nanowires growth at high temperatures. J. Crystal Growth (2016). https://doi.org/10.1016/j.jcrysgro.2015.11.029

  14. S.J. Rezvani, N. Pinto, R. Gunnella, A. D’Elia, A. Marcelli, A. Di Cicco, Engineering porous silicon nanowires with tuneable electronic properties. Condensed Matter 5(4), 57 (2020). https://doi.org/10.3390/condmat5040057. https://www.mdpi.com/2410-3896/5/4/57

  15. L. Huston, A. Lugstein, J. Williams, J. Bradby, The high pressure phase transformation behavior of silicon nanowires. Appl. Phys. Lett. 113(12), 123, 103 (2018). https://doi.org/10.1063/1.5048033

  16. Y. Xuan, L. Tan, B. Cheng, F. Zhang, X. Chen, M. Ge, Q. Zeng, Z. Zeng, Pressure-induced phase transitions in nanostructured silicon. J. Phys. Chem. C 124(49), 27089–27096 (2020). https://doi.org/10.1021/acs.jpcc.0c07686

  17. M. Pasqualini, S. Calcaterra, F. Maroni, S. Rezvani, A.D. Cicco, S. Alexander, H. Rajantie, R. Tossici, F. Nobili, Electrochemical and spectroscopic characterization of an alumina-coated LiMn\(_2\)O\(_4\) cathode with enhanced interfacial stability. Electrochimica Acta 258, 175–181 (2017). https://doi.org/10.1016/j.electacta.2017.10.115

  18. S.J. Rezvani, M. Ciambezi, R. Gunnella, M. Minicucci, M.A. Muñoz, F. Nobili, M. Pasqualini, S. Passerini, C. Schreiner, A. Trapananti, A. Witkowska, A. Di Cicco, Local structure and stability of SEI in graphite and ZFO electrodes probed by as K-Edge absorption spectroscopy. J. Phys. Chem. C 120(8), 4287–4295 (2016). https://doi.org/10.1021/acs.jpcc.5b11798

    Article  Google Scholar 

  19. S. Rezvani, M. Pasqualini, A. Witkowska, R. Gunnella, A. Birrozzi, M. Minicucci, H. Rajantie, M. Copley, F. Nobili, A.D. Cicco, Binder-induced surface structure evolution effects on Li-ion battery performance. Appl. Surface Sci. 435, 1029–1036 (2018). https://doi.org/10.1016/j.apsusc.2017.10.195

    Article  ADS  Google Scholar 

  20. A. Bianconi, A. Marcelli, Surface X-ray absorption near-edge structure: XANES, in Synchrotron Radiation Research (Springer US, Boston, MA, 1992), pp. 63–115. https://doi.org/10.1007/978-1-4615-3280-4_2

  21. A. Di Cicco, A. Giglia, R. Gunnella, S.L. Koch, F. Mueller, F. Nobili, M. Pasqualini, S. Passerini, R. Tossici, A. Witkowska, SEI growth and depth profiling on ZFO electrodes by soft X-ray absorption spectroscopy. Adv. Energy Mater. 5(18), 1500, 642 (2015). https://doi.org/10.1002/aenm.201500642

  22. S.J. Rezvani, F. Nobili, R. Gunnella, M. Ali, R. Tossici, S. Passerini, A. Di Cicco, SEI dynamics in metal oxide conversion electrodes of Li-Ion batteries. J. Phys. Chem. C 121(47), 26379–26388 (2017). https://doi.org/10.1021/acs.jpcc.7b08259

    Article  Google Scholar 

  23. G. Gouadec, P. Colomban, Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog. Crystal Growth Characterization Mater. 53(1), 1–56 (2007). https://doi.org/10.1016/j.pcrysgrow.2007.01.001. URL https://linkinghub.elsevier.com/retrieve/pii/S0960897407000022

  24. Y. Mijiti, M. Perri, J. Coquet, L. Nataf, M. Minicucci, A. Trapananti, T. Irifune, F. Baudelet, A. Di Cicco, A new internally heated diamond anvil cell system for time-resolved optical and x-ray measurements. Rev. Sci. Instruments 91(8), 085, 114 (2020)

    Google Scholar 

  25. A. Dewaele, M. Torrent, P. Loubeyre, M. Mezouar, Compression curves of transition metals in the mbar range: experiments and projector augmented-wave calculations. Phys. Rev. B 78, 104, 102 (2008). https://doi.org/10.1103/PhysRevB.78.104102

  26. G.R. Harp, Z.L. Han, B.P. Tonner, Spatially-resolved X-ray absorption near-edge spectroscopy of silicon in thin silicon-oxide films. Physica Scripta (1990). https://doi.org/10.1088/0031-8949/1990/T31/003

    Article  Google Scholar 

  27. F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff, G. Hollinger, Microscopic structure of the SiO2/Si interface. Phys. Rev. B 38(9), 6084–6096 (1988). https://doi.org/10.1103/PhysRevB.38.6084

    Article  ADS  Google Scholar 

  28. G.R. Harp, Z.L. Han, B.P. Tonner, X-ray absorption near edge structures of intermediate oxidation states of silicon in silicon oxides during thermal desorption. J. Vacuum Sci. Technol. Vacuum Surfaces Films (1990). https://doi.org/10.1116/1.576737

  29. Dien Li, X-ray absorption spectroscopy of silicon dioxide (SiO2) polymorphs: the structural characterization of opal. Am. Mineralogist 76, 622–632 (1994)

    Google Scholar 

  30. G.R. Harp, Z.L. Han, B.P. Tonner, Spatially-resolved X-ray absorption near-edge spectroscopy of Silicon in thin Silicon-oxide Films. Physica Scripta T31, 23–27 (1990). https://doi.org/10.1088/0031-8949/1990/T31/003. http://stacks.iop.org/1402-4896/1990/i=T31/a=003?key=crossref.b75c22d111667e768da9f9416b837c5c

  31. B. Li, D. Yu, S.L. Zhang, Raman spectral study of silicon nanowires. Phys. Rev. B 59, 1645–1648 (1999). https://doi.org/10.1103/PhysRevB.59.1645

    Article  ADS  Google Scholar 

  32. G.G. Siu, X.L. Wu, Y. Gu, X.M. Bao, Ultraviolet and blue emission from crystalline sio2 coated with linbo3 and litao3. Appl. Phys. Lett. 74(13), 1812–1814 (1999). https://doi.org/10.1063/1.1230943/1.123094

    Article  ADS  Google Scholar 

  33. M. Khorasaninejad, J. Walia, S.S. Saini, Enhanced first-order raman scattering from arrays of vertical silicon nanowires. Nanotechnology 23(27), 275, 706 (2012). https://doi.org/10.1088/0957-4484/23/27/275706

  34. S. Zhang, X. Wang, K. Ho, J. Li, P. Diao, S. Cai, Raman spectra in a broad frequency region of p type porous silicon. J. Appl. Phys. 76(5), 3016–3019 (1994). https://doi.org/10.1063/1.3575043/1.357504

    Article  ADS  Google Scholar 

  35. R. Vajtai, Springer Handbook of Nanomaterials (Springer, Heidelberg, 2013). https://doi.org/10.1007/978-3-642-20595-8

  36. S.H. Tolbert, A.B. Herhold, L.E. Brus, A.P. Alivisatos, Pressure-induced structural transformations in Si nanocrystals: surface and shape effects. Phys. Rev. Lett. 76(23), 4384–4387 (1996). https://doi.org/10.1103/PhysRevLett.76.4384

  37. J.Z. Hu, L.D. Merkle, C.S. Menoni, I.L. Spain, Crystal data for high-pressure phases of silicon. Phys. Rev. B 34(7), 4679–4684 (1986). https://doi.org/10.1103/PhysRevB.34.4679

    Article  ADS  Google Scholar 

  38. R.O. Piltz, J.R. Maclean, S.J. Clark, G.J. Ackland, P.D. Hatton, J. Crain, Structure and properties of silicon XII: a complex tetrahedrally bonded phase. Phys. Rev. B 52(6), 4072–4085 (1995). https://doi.org/10.1103/PhysRevB.52.4072

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Javad Rezvani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rezvani, S.J. et al. (2021). Structural Properties of Porous Silicon Nanowires: A Combined Characterization by Advanced Spectroscopic Techniques. In: Di Cicco, A., Giuli, G., Trapananti, A. (eds) Synchrotron Radiation Science and Applications. Springer Proceedings in Physics, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-030-72005-6_15

Download citation

Publish with us

Policies and ethics