Skip to main content

Zn Distribution and Chemical Speciation in Marine Biominerals: An Example on Bivalve and Foraminifera Shells from Polluted Sites

  • Conference paper
  • First Online:
Synchrotron Radiation Science and Applications

Abstract

Biominerals are widespread in Nature and they precipitate to respond to different physiological purposes. A broad knowledge of their chemical and structural properties offers a unique opportunity to improve our capability to reconstruct actual and paleoenvironment. In this work, we show two case studies, bivalves and foraminifera grown in polluted sites that were characterized by applying different and complementary synchrotron radiation-based investigation techniques, mainly focused on the investigation of Zn incorporation in the biomineralized shells. Using scanning transmission X-ray microscopy (STXM) and X-ray micro-fluorescence (µ-XRF), we found the colocalization of elements across the shells, while we obtained information on chemical speciation of Zn by applying X-ray absorption spectroscopy (XAS). Noticeably, instead of metal dispersion in the Ca-carbonate shells, we found traces of several independent phases, in particular for Zn, dispersed generally as microscopic minerals. This work provides fundamental insight into the structural properties, coordinative and chemical environment of some marine biominerals. This new knowledge is fundamental to understand the biogeochemical processes and to develop effective environmental proxies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Beniash, Biominerals—hierarchical nanocomposites: the example of bone. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 47–69 (2011). https://doi.org/10.1002/wnan.105

    Article  Google Scholar 

  2. J. Yu, H. Elderfield, Benthic foraminiferal B/Ca ratios reflect deep water carbonate saturation state. Earth Planet. Sci. Lett. 258, 73–86 (2007). https://doi.org/10.1016/j.epsl.2007.03.025

    Article  ADS  Google Scholar 

  3. D.W. Lea, G.T. Shen, E.A. Boyle, Coralline barium records temporal variability in equatorial Pacific upwelling. Nature 340, 373–376 (1989). https://doi.org/10.1038/340373a0

    Article  ADS  Google Scholar 

  4. S.P. Bryan, T.M. Marchitto, Testing the utility of paleonutrient proxies Cd/Ca and Zn/Ca in benthic foraminifera from thermocline waters. Geochem. Geophys. Geosyst. 11, Q01005 (2010). https://doi.org/10.1029/2009GC002780

  5. A.L. Soldati, D.E. Jacob, P. Glatzel, J.C. Swarbrick, J. Geck, Element substitution by living organisms: the case of manganese in mollusc shell aragonite. Sci. Rep. 6, 22514 (2016). https://doi.org/10.1038/srep22514

    Article  ADS  Google Scholar 

  6. L. Chauvaud, A. Lorrain, R.B. Dunbar, Y.-M. Paulet, G. Thouzeau, F. Jean, J.-M. Guarini, D. Mucciarone, Shell of the Great Scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes. Geochem. Geophys. Geosyst. 6, 1–15 (2005). https://doi.org/10.1029/2004GC000890

  7. M.H. Klünder, D. Hippler, R. Witbaard, D. Frei, Laser ablation analysis of bivalve shells—archives of environmental information. Geol. Surv. Denmark Greenl. Bull. 15, 89–92 (2008)

    Article  Google Scholar 

  8. A.J. Gooday, Benthic foraminifera (protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics. Adv. Mar. Biol. 46, 1–90 (2003). https://doi.org/10.1016/S0065-2881(03)46002-1

    Article  Google Scholar 

  9. E. Armynot du Châtelet, J.-P. Debenay, R. Soulard, Foraminiferal proxies for pollution monitoring in moderately polluted harbors. Environ. Pollut. 127, 27–40 (2004). https://doi.org/10.1016/S0269-7491(03)00256-2

  10. G. Nehrke, H. Poigner, D. Wilhelms-Dick, T. Brey, D. Abele, Coexistence of three calcium carbonate polymorphs in the shell of the Antarctic clam Laternula elliptica. Geochem. Geophys. Geosyst. 13, 1–8 (2012). https://doi.org/10.1029/2011GC003996

  11. S. Weiner, H.A. Lowenstam, L. Hood, Characterization of 80-million-year-old mollusk shell proteins. Proc. Natl. Acad. Sci. U. S. A. 73, 2541–2545 (1976). https://doi.org/10.1073/pnas.73.8.2541

    Article  ADS  Google Scholar 

  12. A. Checa, A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue Cell. 32, 405–416 (2000). https://doi.org/10.1054/tice.2000.0129

    Article  Google Scholar 

  13. Z. Yao, M. Xia, H. Li, T. Chen, Y. Ye, H. Zheng, Bivalve shell: not an abundant useless waste but a functional and versatile biomaterial. Crit. Rev. Environ. Sci. Technol. 44, 2502–2530 (2014). https://doi.org/10.1080/10643389.2013.829763

    Article  Google Scholar 

  14. M. Suzuki, S. Sakuda, H. Nagasawa, Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster. Pinctada Fucata. Biosci. Biotechnol. Biochem. 71, 1735–1744 (2007). https://doi.org/10.1271/bbb.70140

    Article  Google Scholar 

  15. Y. Kong, G. Jing, Z. Yan, C. Li, N. Gong, F. Zhu, D. Li, Y. Zhang, G. Zheng, H. Wang, L. Xie, R. Zhang, Cloning and characterization of Prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster Pinctada fucata. J. Biol. Chem. 284, 10841–10854 (2009). https://doi.org/10.1074/jbc.M808357200

    Article  Google Scholar 

  16. R.A. Lutz, Bivalve Molluscs: biology, ecology and culture by Elizabeth Gosling. Q. Rev. Biol. 79, 317 (2004). https://doi.org/10.1086/425799

    Article  Google Scholar 

  17. L.J. De Nooijer, H.J. Spero, J. Erez, J. Bijma, G.J. Reichart, Biomineralization in Perforate Foraminifera. Earth-Sci. Rev. 135, 48–58 (2014). https://doi.org/10.1016/j.earscirev.2014.03.013

    Article  ADS  Google Scholar 

  18. S. Weiner, P.M. Dove, An overview of biomineralization processes and the problem of the vital effect. Rev. Mineral. Geochem. 54, 1–29 (2003). https://doi.org/10.2113/0540001

    Article  Google Scholar 

  19. B.R. Schöne, D.P. Gillikin, Unraveling environmental histories from skeletal diaries—advances in sclerochronology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 373, 1–5 (2013). https://doi.org/10.1016/j.palaeo.2012.11.026

    Article  Google Scholar 

  20. J. Erez, The source of ions for biomineralization in Foraminifera and their implications for paleoceanographic proxies. Rev. Mineral. Geochem. 54, 115–149 (2003). https://doi.org/10.2113/0540115

    Article  Google Scholar 

  21. G.M. Henderson, New oceanic proxies for paleoclimate. Earth Planet. Sci. Lett. 203, 1–13 (2002). https://doi.org/10.1016/S0012-821X(02)00809-9

    Article  ADS  Google Scholar 

  22. M. Risk, M. Burchell, K. de Roo, R. Nairn, M. Tubrett, G. Försterra, Trace elements in bivalve shells from the Río Cruces, Chile. Aquat. Biol. 10, 85–97 (2010). https://doi.org/10.3354/ab00268

    Article  Google Scholar 

  23. J. Yu, H. Elderfield, B. Hönisch, B/Ca in planktonic foraminifera as a proxy for surface seawater pH. Paleoceanography 22, PA2202 (2007). https://doi.org/10.1029/2006PA001347

  24. J.E. Pietrzak, J.M. Bates, R.M. Scott, Constituents of unionoid extrapalial fluid. II. pH and metal ion composition. Hydrobiologia 50, 89–93 (1976)

    Google Scholar 

  25. M. Zuykov, E. Pelletier, C. Belzile, S. Demers, Alteration of shell nacre micromorphology in blue mussel Mytilus edulis after exposure to free-ionic silver and silver nanoparticles. Chemosphere 84, 701–706 (2011). https://doi.org/10.1016/j.chemosphere.2011.03.021

    Article  ADS  Google Scholar 

  26. V. Yanko, A.J. Arnold, W.C. Parker, Effects of Marine Pollution on Benthic Foraminifera—Modern Foraminifera (Springer, Netherlands, Dordrecht, 2003)

    Google Scholar 

  27. R.J.P. Williams, J.J.R.F. da Silva, The Natural Selection of the Chemical Elements (Bath Press Ltd., Great Britian, 1996)

    Google Scholar 

  28. X.-M. Liu, L.C. Kah, A.H. Knoll, H. Cui, A.J. Kaufman, A. Shahar, R.M. Hazen, Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates. Geochemical Perspect. Lett. 2, 24–34 (2016). https://doi.org/10.7185/geochemlet.1603

    Article  Google Scholar 

  29. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment. Exp. Suppl. 101, 133–164 (2012). https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  30. R. Singh, N. Gautam, A. Mishra, R. Gupta, Heavy metals and living systems: An overview. Indian J. Pharmacol. 43, 246–253 (2011). https://doi.org/10.4103/0253-7613.81505

    Article  Google Scholar 

  31. D. Medas, I. Carlomagno, C. Meneghini, G. Aquilanti, T. Araki, D.E. Bedolla, C. Buosi, M.A. Casu, A. Gianoncelli, A.C. Kuncser, V.A. Maraloiu, G.D. Giudici, Zinc incorporation in marine bivalve shells grown in mine-polluted seabed sediments : a case study in the Malfidano mining area ( SW Sardinia, Italy ). Environ. Sci. Pollut. Res. (2018). https://doi.org/10.1007/s11356-018-3504-y

    Article  Google Scholar 

  32. G. De Giudici, C. Meneghini, D. Medas, C. Buosi, P. Zuddas, A. Iadecola, O. Mathon, A. Cherchi, A.C. Kuncser, Coordination environment of Zn in foraminifera Elphidium aculeatum and Quinqueloculina seminula shells from a polluted site. Chem. Geol. 477, 100–111 (2018). https://doi.org/10.1016/j.chemgeo.2017.12.009

    Article  ADS  Google Scholar 

  33. T. Bechstädt, M. Boni, Sedimentological, stratigraphical and ore deposits field guide of the autochthonous Cambro-Ordovician of southwestern Sardinia: Servizio Geologico d’Italia Memorie Descritive Carta Geologica d’Italia, v. 48, 434 p. (1994)

    Google Scholar 

  34. A. Marcello, S. Pretti, P. Valera, M. Agus, M. Boni, M. Fiori, Metallogeny in Sardinia (Italy): from the Cambrian to the Tertiary, in 32nd International Geological Congress, APAT 4, ed. by L. Guerrieri, L. Rischia, L. Serva, pp. 14–36, Firenze (2004)

    Google Scholar 

  35. M. Boni, H.A. Gilg, G. Aversa, G. Balassone, The “Calamine” of Southwest Sardinia: geology, mineralogy, and stable isotope geochemistry of supergene Zn mineralization. Econ. Geol. 98, 731–748 (2003). https://doi.org/10.2113/gsecongeo.98.4.731

    Article  Google Scholar 

  36. P. Stara, R. Rizzo, G.A. Tanca, Iglesiente-Arburese: Miniere e Minerali, Centrooffset, Siena (1996)

    Google Scholar 

  37. R. Bartole, S. De Muro, Acoustic facies and seabed features of the mixed carbonate-siliciclastic deposits of the last eustatic cycle in the La Maddalena Archipelago (North Sardinia, Italy). Ital. J. Geosci. 131, 102–122 (2012). https://doi.org/10.3301/IJG.2011.28

    Article  Google Scholar 

  38. M. Schintu, B. Marras, A. Maccioni, D. Puddu, P. Meloni, A. Contu, Monitoring of trace metals in coastal sediments from sites around Sardinia. Western Mediterranean. Mar. Pollut. Bull. 58, 1577–1583 (2009). https://doi.org/10.1016/j.marpolbul.2009.07.015

    Article  Google Scholar 

  39. V. Moschino, M. Schintu, A. Marrucci, B. Marras, N. Nesto, L. Da Ros, An ecotoxicological approach to evaluate the effects of tourism impacts in the Marine Protected Area of La Maddalena (Sardinia, Italy). Mar. Pollut. Bull. 122, 306–315 (2017). https://doi.org/10.1016/j.marpolbul.2017.06.062

    Article  Google Scholar 

  40. G. Salvi, C. Buosi, D. Arbulla, A. Cherchi, G. De Giudici, A. Ibba, S. De Muro, Ostracoda and foraminifera response to a contaminated environment: the case of the Ex-military arsenal of the la Maddalena Harbour (Sardinia, Italy). Micropaleontology 61, 115–133 (2015)

    Google Scholar 

  41. W.R. Walton, Techniques for recognition of living foraminifera. Contrib. Cushman. Found. Foraminifer. Res. 3, 56–60 (1952)

    Google Scholar 

  42. A.R. Loeblich Jr., H. Tappan, Foraminiferal Genera and Their Classification (Van Reinhold Company, New York, 1987)

    Google Scholar 

  43. F. Cimerman, M.R. Langer, Mediterranean Foraminifera. Ljubljana, Slovenska Akademija Znanosti in Umetnosti. Academia Scientiarum et ArtiumSlovencia Cl. 4 Historia Naturalis (1991)

    Google Scholar 

  44. L. Hottinger, E. Halicz, Z. Reiss, Recent Foraminiferida from the Gulf of Aqaba, Red Sea. Lubljana Academia Scientiarum et ArtiumSlovenica, Classis IV, Historia Naturalis (1993)

    Google Scholar 

  45. F. Sgarrella, M. Moncharmont Zei, Benthic foraminifera of the Gulf of Naples (Italy): systematics and autoecology. Boll. Soc. Paleontol. Ital. 32, 145–264 (1993)

    Google Scholar 

  46. D.E. Conners, S.M. Westerfield, A. Feyko, M.C. Black, Lead Accumulation in soft tissues and shells of asiatic clams (Corbicula fluminea), in The 1999 Georgia Water Resources Conference, ed. by K. J. Hatcher, pp. 597–600 (1999)

    Google Scholar 

  47. A. Gianoncelli, G.R. Morrison, B. Kaulich, D. Bacescu, J. Kovac, Scanning transmission x-ray microscopy with a configurable detector. Appl. Phys. Lett. 89, 251117–251119 (2006). https://doi.org/10.1063/1.2422908

    Article  ADS  Google Scholar 

  48. G.R. Morrison, A. Gianoncelli, B. Kaulich, D. Bacescu, J. Kovac, A fast readout CCD system for configured-detector imaging in STXM, in Proceedings of the 8th International Conference X-ray Microscopy. IPAP Conference Series, pp. 277–379 (2006)

    Google Scholar 

  49. A. Gianoncelli, B. Kaulich, R. Alberti, T. Klatka, A. Longoni, A. de Marco, A. Marcello, M. Kiskinova, Simultaneous soft X-ray transmission and emission microscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 608, 195–198 (2009). https://doi.org/10.1016/j.nima.2009.06.035

  50. A. Gianoncelli, G. Kourousias, A. Stolfa, B. Kaulich, Recent developments at the TwinMic beamline at ELETTRA: an 8 SDD detector setup for low energy X-ray Fluorescence. J. Phys. Conf. Ser. 425, 182001 (2013). https://doi.org/10.1088/1742-6596/425/18/182001

    Article  Google Scholar 

  51. A. Gianoncelli, G. Kourousias, L. Merolle, M. Altissimo, A. Bianco, Current status of the TwinMic beamline at Elettra: a soft X-ray transmission and emission microscopy station. J. Synchrotron Radiat. 23, 1526–1537 (2016). https://doi.org/10.1107/S1600577516014405

    Article  Google Scholar 

  52. A. Gianoncelli, G. Kourousias, M. Altissimo, D.E. Bedolla, L. Merolle, A. Stolfa, H.-J. Shin, Combining multiple imaging techniques at the TwinMic X-ray microscopy beamline. AIP Conf. Proc. 1764, 30002 (2016). https://doi.org/10.1063/1.4961136

    Article  Google Scholar 

  53. B. Kaulich, D. Bacescu, J. Susini, C. David, E. Di Fabrizio, G.R. Morrison, P. Charalambous, J. Thieme, T. Wilhein, J. Kovac, D. Cocco, M. Salome, O. Dhez, T. Weitkamp, S. Cabrini, D. Cojoc, A. Gianoncelli, U. Vogt, M. Podnar, M. Zangrando, M. Zacchigna, M. Kiskinova, Proceeding 8th International Conference X‐ray Microscopy IPAP Conference Series. Presented at the (2006)

    Google Scholar 

  54. Numpy: https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.corrcoef.html. Copyright 2008–2009, The Scipy community. Last updated on 11 May 2014

  55. scipy: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.spearmanr.html. Copyright 2008–2009, The Scipy community. Last updated on 11 May 2014

  56. A. Di Cicco, G. Aquilanti, M. Minicucci, E. Principi, N. Novello, A. Cognigni, L. Olivi, Novel XAFS capabilities at ELETTRA synchrotron light source. J. Phys. Conf. Ser. 190, 12043 (2009). https://doi.org/10.1088/1742-6596/190/1/012043

    Article  Google Scholar 

  57. M. Benfatto, C. Meneghini, A close look into the low energy region of the XAS spectra: the XANES region, in Synchrotron Radiation, Basic, Methods and Applications, ed. by S. Mobilio, F. Boscherini, C. Meneghini (Springer-Verlag, Berlin, 2014), pp. 213–240

    Google Scholar 

  58. R. Torchio, C. Meneghini, S. Mobilio, G. Capellini, A. Garcia Prieto, J. Alonso, M.L. Fdez-Gubieda, V. Turco Liveri, A. Longo, A.M. Ruggirello, T. Neisius, Microstructure and magnetic properties of colloidal cobalt nano-clusters. J. Magn. Magn. Mater. 322, 3565–3571 (2010). https://doi.org/10.1016/j.jmmm.2010.07.008

    Article  ADS  Google Scholar 

  59. C. Meneghini, F. Bardelli, S. Mobilio, ESTRA-FitEXA: a software package for EXAFS data analysis. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 285, 153–157 (2012). https://doi.org/10.1016/j.nimb.2012.05.027

  60. O. Mathon, A. Beteva, J. Borrel, D. Bugnazet, S. Gatla, R. Hino, I. Kantor, T. Mairs, M. Munoz, S. Pasternak, F. Perrin, S. Pascarelli, The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. J. Synchrotron Radiat. 22, 1548–1554 (2015). https://doi.org/10.1107/S1600577515017786

    Article  Google Scholar 

  61. C.K. Carney, S.R. Harry, S.L. Sewell, Detoxification biominerals, in Biomineralization I. Topics in Current Chemistry, ed. by K. Naka (Springer, Berlin, Heidelberg, 2007), pp. 155–185

    Google Scholar 

  62. V. Le Cadre, J.-P. Debenay, Morphological and cytological responses of Ammonia (foraminifera) to copper contamination: implication for the use of foraminifera as bioindicators of pollution. Environ. Pollut. 143, 304–317 (2006). https://doi.org/10.1016/j.envpol.2005.11.033

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge CESA (grant number: E58C16000080003) from RAS, and RAS/FBS (grant number: F72F16003080002) grants, the POR FESR Sardegna 2014-2020 (project cluster Top-Down: TESTARE), and the CeSAR (Centro Servizi d’Ateneo per la Ricerca) of the University of Cagliari, Italy, for SEM analysis. The ESRF EV-94 and ES-540 proposals provided access to the BM23 micro-focus experiment. The authors acknowledge the CERIC-ERIC Consortium (grant numbers: 20152020, 20162061, 20167045, 20177041, and 20182100) for the access to experimental facilities and financial support and the Romanian Ministry of Education (through the Core Program, Project PN16-480102). XAFS (Elettra) 20160254 beamtime, Diamond SP16496 beamtime, and grant are acknowledged. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Program for Research and Innovation HORIZON 2020. The Grant of Excellence Departments, MIUR (ARTICOLO 1, COMMI 314–337 LEGGE 232/2016), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Medas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Giudici, G. et al. (2021). Zn Distribution and Chemical Speciation in Marine Biominerals: An Example on Bivalve and Foraminifera Shells from Polluted Sites. In: Di Cicco, A., Giuli, G., Trapananti, A. (eds) Synchrotron Radiation Science and Applications. Springer Proceedings in Physics, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-030-72005-6_10

Download citation

Publish with us

Policies and ethics