Skip to main content

CML End Phase and Blast Crisis: Implications and Management

  • Chapter
  • First Online:
Chronic Myeloid Leukemia

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 761 Accesses

Abstract

Treatment of blast crisis (BC) is one of the remaining challenges in the management of CML. Tyrosine kinase inhibitors (TKI) have moderately improved survival in BC, but a median survival of less than 1 year is still unsatisfactory. Earlier recognition of end-phase CML and early treatment intensification might improve outcome. High-risk additional chromosomal abnormalities and somatic mutations have been proposed for risk assessment and better recognition of patients at risk for progression to end-phase CML. In this article we review features of BC, tests required for diagnosis of BC, options of prevention, and the various treatment modalities of BC (intensive chemotherapy alone or in combination with TKI, allo-SCT, investigational agents). The best prognosis is observed in patients that achieve a second chronic phase (CP2). Allo-SCT probably further improves prognosis in CP2. The choice of TKI should be directed by the mutation profile of the patient. Also, a better pathophysiologic understanding of BC is addressed. Current treatment options are combined in a concluding strategy for the management of CML end phase and BC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minot GR, Buckman TE, Isaacs R. CML: age, incidence, duration and benefit derived from irradiation. JAMA. 1924;82:1489–94.

    Article  Google Scholar 

  2. Morrow GW Jr, Pease GL, Stroebel CF, Bennett WA. Terminal phase of chronic myelogenous leukemia. Cancer. 1965;18(3):369–74.

    Article  PubMed  Google Scholar 

  3. Karanas A, Silver RT. Characteristics of the terminal phase of chronic granulocytic leukemia. Blood. 1968;32(3):445–59.

    Article  CAS  PubMed  Google Scholar 

  4. Canellos GP, Devita VT, Whang-Peng J, Carbone PP. Hematologic and cytogenetic remission of blastic transformation in chronic granulocytic leukemia. Blood. 1971;38(6):671–9.

    Article  CAS  PubMed  Google Scholar 

  5. Marks SM, Baltimore D, McCaffrey R. Terminal transferase as a predictor of initial responsiveness to vincristine and prednisone in blastic chronic myelogenous leukemia. N Engl J Med. 1978;298:812–4.

    Article  CAS  PubMed  Google Scholar 

  6. McCaffrey R, Harrison TA, Parkman R, Baltimore D. Terminal deoxynucleotidyl transferase activity in human leukemic cells and in normal human thymocytes. N Engl J Med. 1975;292(15):775–80.

    Article  CAS  PubMed  Google Scholar 

  7. Johansson B, Fioretos T, Mitelman F. Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol. 2002;107:76–94.

    Article  CAS  PubMed  Google Scholar 

  8. Soverini S, Hochhaus A, Nicolini FE, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118:1208–15.

    Article  CAS  PubMed  Google Scholar 

  9. Saussele S, Lauseker M, Gratwohl A, et al. Allogeneic hematopoietic stem cell transplantation (Allo SCT) for chronic myeloid leukemia in the imatinib era: evaluation of its impact within a subgroup of the randomized German CML study IV. Blood. 2010;115:1880–5.

    Article  CAS  PubMed  Google Scholar 

  10. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  PubMed  Google Scholar 

  11. Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2006;108(6):1809–20.

    Article  CAS  PubMed  Google Scholar 

  12. Radich JP, Deininger M, Abboud CN, et al. Chronic myeloid leukemia, version 1.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2018;16(9):1108–35.

    Article  Google Scholar 

  13. Spiers AS. Metamorphosis of chronic granulocytic leukaemia: diagnosis, classification, and management. Br J Haematol. 1979;41:1–7.

    Google Scholar 

  14. Cortes JE, Talpaz M, Giles F, et al. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood. 2003;101:3794–800.

    Article  CAS  PubMed  Google Scholar 

  15. Schoch C, Haferlach T, Kern W, et al. Occurrence of additional chromosome aberrations in chronic myeloid leukemia patients treated with imatinib mesylate. Leukemia. 2003;17:461–3.

    Article  CAS  PubMed  Google Scholar 

  16. Haferlach C, Bacher U, Schnittger S, et al. Similar patterns of chromosome abnormalities in CML occur in addition to the Philadelphia chromosome with or without tyrosine kinase inhibitor treatment. Leukemia. 2010;24:638–40.

    Article  CAS  PubMed  Google Scholar 

  17. Alimena G, De Cuia MR, Diverio D, et al. The karyotype of blastic crisis. Cancer Genet Cytogenet. 1987;26:39–50.

    Article  CAS  PubMed  Google Scholar 

  18. Fabarius A, Leitner A, Hochhaus A, et al. Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML Study IV. Blood. 2011;118:6760–8.

    Article  CAS  PubMed  Google Scholar 

  19. Fabarius A, Kalmanti L, Dietz CT, et al. Impact of unbalanced minor route versus major route karyotypes at diagnosis on prognosis of CML. Ann Hematol. 2015;94:2015–24.

    Article  PubMed  Google Scholar 

  20. Hehlmann R, Saußele S, Voskanyan A, Silver RT. Management of CML-blast crisis. Best Pract Res Clin Haematol. 2016;29(3):295–307.

    Article  PubMed  Google Scholar 

  21. Krulik M, Smadja N, Degramont A, et al. Sequential karyotype study on Ph-positive chronic myelocytic leukemia. Significance of additional chromosomal abnormalities during disease evolution. Cancer. 1987;60:974–9.

    Article  CAS  PubMed  Google Scholar 

  22. Verma D, Kantarjian H, Shan J, et al. Survival outcomes for clonal evolution in chronic myeloid leukemia patients on second generation tyrosine kinase inhibitor therapy. Cancer. 2010;116:2673–81.

    CAS  PubMed  Google Scholar 

  23. Branford S, Wang P, Yeung DT, et al. Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood. 2018;132(9):948–61.

    Article  CAS  PubMed  Google Scholar 

  24. Grossmann V, Kohlmann A, Zenger M, et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia. 2011;25:557–60.

    Article  CAS  PubMed  Google Scholar 

  25. Mitelman F, Levan G, Nilsson PG, et al. Non-random karyotypic evolution in chronic myeloid leukemia. Int J Cancer. 1976;18:24–30.

    Article  CAS  PubMed  Google Scholar 

  26. Branford S, Kim DDH, Apperley J, et al. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia. 2019;33(8):1835–50.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gong Z, Medeiros LJ, Cortes JE, et al. Cytogenetics-based risk prediction of blastic transformation of chronic myeloid leukemia in the era of TKI therapy. Blood Adv. 2017;1(26):2541–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hehlmann R, Voskanyan A, Lauseker M, et al. High-risk additional chromosomal abnormalities at low blast counts herald death by CML. Leukemia 2020;34(8):2074–2086.

    Google Scholar 

  29. Wang W, Cortes JE, Tang G, et al. Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood. 2016;127(22):2742–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Soverini S, Martinelli G, Rosti G, et al. ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J Clin Oncol. 2005;23:4100–9.

    Article  CAS  PubMed  Google Scholar 

  32. Prokocimer M, Rotter V. Structure and function of p53 in normal cells and their aberrations in cancer cells: projection on the hematologic cell lineages. Blood. 1994;84:2391–411.

    Article  CAS  PubMed  Google Scholar 

  33. Sill H, Goldman JM, Cross NCP. Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia. Blood. 1995;85:2013–6.

    Article  CAS  PubMed  Google Scholar 

  34. Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453:110–5.

    Article  CAS  PubMed  Google Scholar 

  35. Roche-Lestienne C, Deluche L, Corm S, et al. RUNX1 DNA-binding mutations and RUNX1-PRDM16 cryptic fusions in BCR-ABL(+) leukemias are frequently associated with secondary trisomy 21 and may contribute to clonal evolution and imatinib resistance. Blood. 2008;111:3735–41.

    Article  CAS  PubMed  Google Scholar 

  36. Radich JP, Dai H, Mao M, et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A. 2006;103:2794–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng C, Li L, Haak M, et al. Gene expression profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis. Leukemia. 2006;20:1028–34.

    Article  CAS  PubMed  Google Scholar 

  38. Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351:657–67.

    Article  CAS  PubMed  Google Scholar 

  39. Kok CH, Yeung DT, Lu L, et al. Gene expression signature that predicts early molecular response failure in chronic-phase CML patients on frontline imatinib. Blood Adv. 2019;3(10):1610–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oehler VG, Yeung KY, Choi YE, et al. The derivation of diagnostic markers of chronic myeloid leukemia progression from microarray data. Blood. 2009;114:3292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol. 2015;94(Suppl 2):107–21.

    Article  CAS  Google Scholar 

  42. Perrotti D, Jamieson C, Goldman J, et al. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest. 2010;120:2254–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Radich JP. The biology of CML blast crisis. ASH Education Program Book, 2007(1):384–91.

    Google Scholar 

  44. Koptyra M, Falinski R, Nowicki MO, et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood. 2006;108:319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Skorski T. Oncogenic tyrosine kinases and the DNA-damage response. Nat Rev Cancer. 2002;2:351–60.

    Article  CAS  PubMed  Google Scholar 

  46. Nowicki MO, Falinski R, Koptyra M, et al. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood. 2004;104:3746–53.

    Article  CAS  PubMed  Google Scholar 

  47. Soverini S, Gnani A, Colarossi S, et al. Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors. Blood. 2009;114:2168–71.

    Article  CAS  PubMed  Google Scholar 

  48. Sattler M, Verma S, Shrikhande G, et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem. 2000;275:24273–8.

    Article  CAS  PubMed  Google Scholar 

  49. Giotopoulos G, Huntly BJ. CML: new tools to answer old questions. Blood. 2020;135(26):2327–8.

    Article  PubMed  CAS  Google Scholar 

  50. Ko TK, Javed A, Lee KL, et al. An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia. Blood. 2020;135:2337–53.

    Article  PubMed  Google Scholar 

  51. Mohty M, Yong AS, Szydlo RM, Apperley JF, Melo JV. The polycomb group BMI1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia. Blood. 2007;110(1):380–3.

    Article  CAS  PubMed  Google Scholar 

  52. Marmont AM, Damasio EE. The treatment of terminal metamorphosis of chronic granulocytic leukaemia with corticosteroids and vincristine. Acta Haematol. 1973;50:1–8.

    Article  CAS  PubMed  Google Scholar 

  53. Iacoboni SJ, Plunkett W, Kantarjian HM, et al. High-dose cytosine arabinoside: treatment and cellular pharmacology of chronic myelogenous leukemia blast crisis. J Clin Oncol. 1986;4:1079–88.

    Article  CAS  PubMed  Google Scholar 

  54. Hehlmann R, Lauseker M, Saußele S, et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia. 2017;31(11): 2398–2406.

    Google Scholar 

  55. Hochhaus A, Larson RA, Guilhot F, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. New England Journal of Medicine. 2017;376(10):917–927.

    Google Scholar 

  56. Söderlund S, Dahlén T, Sandin F, et al. Advanced phase chronic myeloid leukaemia (CML) in the tyrosine kinase inhibitor era–a report from the Swedish CML register. Eur J Haematol. 2017;98(1):57–66.

    Google Scholar 

  57. Soverini S, Bavaro L, Benedittis D, et al. Prospective assessment of NGS-detectable mutations in CML patients with nonoptimal response: the NEXT-in-CML study. Blood. 2020;135(8):534–41.

    Article  PubMed  Google Scholar 

  58. Hehlmann R. How I treat CML blast crisis. Blood. 2012;120:737–47.

    Article  CAS  PubMed  Google Scholar 

  59. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–42.

    Article  CAS  PubMed  Google Scholar 

  60. Kantarjian HM, Cortes J, O’Brien S, et al. Imatinib mesylate (STI571) therapy for Philadelphia chromosome–positive chronic myelogenous leukemia in blast phase. Blood. 2002;99:3547–53.

    Article  CAS  PubMed  Google Scholar 

  61. Palandri F, Castagnetti F, Testoni N, et al. Chronic myeloid leukemia in blast crisis treated with imatinib 600 mg: outcome of the patients alive after a 6-year follow-up. Haematologica. 2008;93:1792–6.

    Article  CAS  PubMed  Google Scholar 

  62. Sawyers CL, Hochhaus A, Feldman E, et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood. 2002;99:3530–9.

    Article  CAS  PubMed  Google Scholar 

  63. Sureda A, Carrasco M, de Miguel M, et al. Imatinib mesylate as treatment for blastic transformation of Philadelphia chromosome positive chronic myelogenous leukemia. Haematologica. 2003;88:1213–20.

    CAS  PubMed  Google Scholar 

  64. Copland M, Slade D, Byrne J. FLAG-IDA and ponatinib in patients with blast phase chronic myeloid leukaemia: results from the phase I/II UK Trials Acceleration Programme Matchpoint trial. Blood. 2019;134:497.

    Article  Google Scholar 

  65. Milojkovic D, Ibrahim A, Reid A, et al. Efficacy of combining dasatinib and FLAG-IDA for patients with chronic myeloid leukemia in blastic transformation. Haematologica Hematol J. 2012;97:473–4.

    Article  CAS  Google Scholar 

  66. Mayer RJ, Davis RB, Schiffer, et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. N Engl J Med. 1994;331(14):896–903.

    Article  CAS  PubMed  Google Scholar 

  67. Strati P, Kantarjian H, Thomas D, et al. HCVAD plus imatinib or dasatinib in lymphoid blastic phase chronic myeloid leukemia. Cancer. 2014;120:373–80.

    Article  CAS  PubMed  Google Scholar 

  68. Cortes J, Kim DW, Raffoux E, et al. Efficacy and safety of dasatinib in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blast phase. Leukemia. 2008;22:2176–83.

    Article  CAS  PubMed  Google Scholar 

  69. Saglio G, Hochhaus A, Goh YT, et al. Dasatinib in imatinib-resistant or imatinib-intolerant chronic myeloid leukemia in blast phase after 2 years of follow-up in a phase 3 study: efficacy and tolerability of 140 milligrams once daily and 70 milligrams twice daily. Cancer. 2010;116:3852–61.

    Article  CAS  PubMed  Google Scholar 

  70. Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354:2531–41.

    Article  CAS  PubMed  Google Scholar 

  71. Porkka K, Koskenvesa P, Lundan T, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112:1005–12.

    Article  CAS  PubMed  Google Scholar 

  72. Giles FJ, Kantarjian HM, le Coutre PD, et al. Nilotinib is effective in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blastic phase. Leukemia. 2012;26:959–62.

    Article  CAS  PubMed  Google Scholar 

  73. Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354:2542–51.

    Article  PubMed  Google Scholar 

  74. Fruehauf S, Topaly J, Buss EC, et al. Imatinib combined with mitoxantrone/etoposide and cytarabine is an effective induction therapy for patients with chronic myeloid leukemia in myeloid blast crisis. Cancer. 2007;109:1543–9.

    Article  CAS  PubMed  Google Scholar 

  75. Oki Y, Kantarjian HM, Gharibyan V, et al. Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. Cancer. 2007;109:899–906.

    Article  CAS  PubMed  Google Scholar 

  76. Quintas-Cardama A, Kantarjian H, Garcia-Manero G, et al. A pilot study of imatinib, low-dose cytarabine and idarubicin for patients with chronic myeloid leukemia in myeloid blast phase. Leuk Lymphoma. 2007;48:283–9.

    Article  CAS  PubMed  Google Scholar 

  77. Cortes J, Jabbour E, Daley GQ, et al. Phase 1 study of lonafarnib (SCH 66336) and imatinib mesylate in patients with chronic myeloid leukemia who have failed prior single-agent therapy with imatinib. Cancer. 2007;110:1295–302.

    Article  CAS  PubMed  Google Scholar 

  78. Fang B, Li N, Song Y, et al. Standard-dose imatinib plus low-dose homoharringtonine and granulocyte colony-stimulating factor is an effective induction therapy for patients with chronic myeloid leukemia in myeloid blast crisis who have failed prior single-agent therapy with imatinib. Ann Hematol. 2010;89:1099–105.

    Article  CAS  PubMed  Google Scholar 

  79. Rea D, Legros L, Raffoux E, et al. High-dose imatinib mesylate combined with vincristine and dexamethasone (DIV regimen) as induction therapy in patients with resistant Philadelphia-positive acute lymphoblastic leukemia and lymphoid blast crisis of chronic myeloid leukemia. Leukemia. 2006;20:400–3.

    Article  CAS  PubMed  Google Scholar 

  80. Deau B, Nicolini FE, Guilhot J, et al. The addition of daunorubicin to imatinib mesylate in combination with cytarabine improves the response rate and the survival of patients with myeloid blast crisis chronic myelogenous leukemia (AFR01 study). Leuk Res. 2011;35:777–82.

    Article  CAS  PubMed  Google Scholar 

  81. Ghez D, Micol JB, Pasquier F, et al. Clinical efficacy of second generation tyrosine kinase inhibitor and 5-azacytidine combination in chronic myelogenous leukaemia in myeloid blast crisis. Eur J Cancer (Oxford, England 1990). 2013;49:3666–70.

    Article  CAS  Google Scholar 

  82. Doan V, Wang A, Prescott H. Bosutinib for the treatment of chronic myeloid leukemia. Am J Health Syst Pharm. 2015;72:439–47.

    Article  CAS  PubMed  Google Scholar 

  83. Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–96.

    Article  CAS  PubMed  Google Scholar 

  84. Valent P, Hadzijusufovic E, Schernthaner GH, et al. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood. 2015;125:901–6.

    Article  CAS  PubMed  Google Scholar 

  85. Rea D, Mirault T, Raffoux E, et al. Usefulness of the 2012 European CVD risk assessment model to identify patients at high risk of cardiovascular events during nilotinib therapy in chronic myeloid leukemia. Leukemia. 2015;29(5):1206–9.

    Google Scholar 

  86. Jain P, Kantarjian HM, Ghorab A, et al. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era: cohort study of 477 patients. Cancer. 2017;123(22):4391–402.

    Article  CAS  PubMed  Google Scholar 

  87. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020:1–19.

    Google Scholar 

  88. Gratwohl A, Pfirrmann M, Zander A, et al. Long-term outcome of patients with newly diagnosed chronic myeloid leukemia: a randomized comparison of stem cell transplantation with drug treatment. Leukemia. 2016;30(3):562–9.

    Article  CAS  PubMed  Google Scholar 

  89. Gratwohl A, Brand R, Apperley J, et al. Allogeneic hematopoietic stem cell transplantation for chronic myeloid leukemia in Europe 2006: transplant activity, long-term data and current results. An analysis by the chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Haematologica. 2006;91(4):513–21.

    PubMed  Google Scholar 

  90. Saussele S, Lauseker M, Muller MC, et al. Allogeneic hematopoietic stem cell transplantation (HSCT) in the Imatinib-era: update on the survival outcome following allogeneic HSCT after imatinib failure; results of the German CML Study IV. Blood. 2014;124:abstract no. 2567.

    Article  Google Scholar 

  91. Jiang H, Xu LP, Liu DH, et al. Allogeneic hematopoietic SCT in combination with tyrosine kinase inhibitor treatment compared with TKI treatment alone in CML blast crisis. Bone Marrow Transplant. 2014;49(9):1146–54.

    Article  CAS  PubMed  Google Scholar 

  92. Oyekunle A, Zander AR, Binder M, et al. Outcome of allogeneic SCT in patients with chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Ann Hematol. 2013;92:487–96.

    Article  CAS  PubMed  Google Scholar 

  93. Gratwohl A, Heim D. Current role of stem cell transplantation in chronic myeloid leukaemia. Best Pract Res Clin Haematol. 2009;22:431–43.

    Article  PubMed  Google Scholar 

  94. Jabbour E, Kantarjian H, O’Brien S, et al. Sudden blastic transformation in patients with chronic myeloid leukemia treated with imatinib mesylate. Blood. 2006;107:480–2.

    Article  CAS  PubMed  Google Scholar 

  95. Gratwohl A, Baldomero H, Passweg J. The role of hematopoietic stem cell transplantation in chronic myeloid leukemia. Ann Hematol. 2015;94(Suppl 2):177–86.

    Article  CAS  Google Scholar 

  96. Neviani P, Santhanam R, Oaks JJ, et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest. 2007;117:2408–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Agarwal A, MacKenzie R, Oddo J, et al. A novel SET antagonist (OP449) is cytotoxic to CML cells, including the highly-resistant BCR-ABLT315I mutant, and demonstrates enhanced efficacy in combination with ABL tyrosine kinase inhibitors. Blood. 2011;118:1603. Abstract 3757

    Article  Google Scholar 

  98. Lucas CM, Harris RJ, Giannoudis A, et al. Cancerous inhibitor of PP2A (CIP2A) at diagnosis of chronic myeloid leukemia is a critical determinant of disease progression. Blood. 2011;117:6660–8.

    Article  CAS  PubMed  Google Scholar 

  99. Lucas CM, Milani M, Butterworth M, et al. High CIP2A levels correlate with an antiapoptotic phenotype that can be overcome by targeting BCL-X L in chronic myeloid leukemia. Leukemia. 2016;30(6):1273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lai D, Chen M, Su J, et al. PP2A inhibition sensitizes cancer stem cells to ABL tyrosine kinase inhibitors in BCR-ABL+ human leukemia. Sci Transl Med. 2018;10(427):eaan8735.

    Article  PubMed  CAS  Google Scholar 

  101. Hurtz C, Hatzi K, Cerchietti L, et al. BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J Exp Med. 2011;208:2163–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang H, Li H, Xi HS, et al. HIF1α is required for survival maintenance of chronic myeloid leukemia stem cells. Blood. 2012;119:2595–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shah NP, Cortes JE, Martinelli G, et al. Dasatinib plus smoothened (SMO) inhibitor BMS-833923 in chronic myeloid Leukemia (CML) with resistance or suboptimal response to a prior tyrosine kinase inhibitor (TKI): phase I study CA180323. Blood (ASH Annu Meet Abstr). 2014;124:4539.

    Google Scholar 

  104. Court Recart AC, Sadarangani A, Goff D, et al. Combination targeted therapy to impair self-renewal capacity of human blast crisis leukemia stem cells. Blood. 2011;118:737. Abstract 1693

    Article  Google Scholar 

  105. Gallipoli P, Cook A, Rhodes S, et al. JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood. 2014;124:1492–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mak DH, Wang RY, Schober WD, et al. Activation of apoptosis signaling eliminates CD34+ progenitor cells in blast crisis CML independent of response to tyrosine kinase inhibitors. Leukemia. 2012;26:788–94.

    Article  CAS  PubMed  Google Scholar 

  107. Pellicano F, Simara P, Sinclair A, et al. The MEK inhibitor PD184352 enhances BMS-214662-induced apoptosis in CD34+ CML stem/progenitor cells. Leukemia. 2011;25:1159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pemovska T, Johnson E, Kontro M, et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature. 2015;519:102–5.

    Article  CAS  PubMed  Google Scholar 

  109. Pietarinen PO, Pemovska T, Kontro M, et al. Novel drug candidates for blast phase chronic myeloid leukemia from high-throughput drug sensitivity and resistance testing. Blood Cancer J. 2015;5:e309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang W, Lv FF, Du Y, et al. The effect of nilotinib plus arsenic trioxide on the proliferation and differentiation of primary leukemic cells from patients with chronic myeloid leukemia in blast crisis. Cancer Cell Int. 2015;15:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Neviani P, Santhanam R, Trotta R, et al. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell. 2005;8:355–68.

    Article  CAS  PubMed  Google Scholar 

  112. Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458:776–U117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xie J, Zhang X, Fang BZ, et al. Combination of rapamycin and imatinib in treating refractory chronic myeloid leukemia myeloid blast crisis: a case report (025B3). Chin Med Sci J. 2013;28:127–8.

    Article  PubMed  Google Scholar 

  114. Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372:2006–17.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wang H, Kaur G, Sankin AI, Chen F, Guan F, Zang X. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. J Hematol Oncol. 2019;12(1):59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pratap S, Zhao ZJ. Finding new lanes: chimeric antigen receptor (CAR) T-cells for myeloid leukemia. Cancer Rep. 2020;3(2):e1222.

    Google Scholar 

  117. Hughes TP, Mauro MJ, Cortes JE, et al. Asciminib in chronic myeloid Leukemia after ABL kinase inhibitor failure. N Engl J Med. 2019;381(24):2315–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Maiti A, Franquiz MJ, Ravandi F, et al. Venetoclax and BCR-ABL tyrosine kinase inhibitor combinations: outcome in patients with Philadelphia chromosome-positive advanced myeloid leukemias. Acta Haematol. 2020:1–7.

    Google Scholar 

  119. Kaeda J, O’Shea D, Szydlo RM, et al. Serial measurement of BCR-ABL transcripts in the peripheral blood after allogeneic stem cell transplantation for chronic myeloid leukemia: an attempt to define patients who may not require further therapy. Blood. 2006;107:4171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hehlmann R, Müller MC, Lauseker M, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol. 2014;32:415–23.

    Article  PubMed  CAS  Google Scholar 

  121. Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre stop Imatinib (STIM) trial. Lancet Oncol. 2010;11:1029–35.

    Article  CAS  PubMed  Google Scholar 

  122. Hasford J, Pfirrmann M, Hehlmann R, et al. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. Writing Committee for the Collaborative CML Prognostic Factors Project Group. J Natl Cancer Inst. 1998;90:850–8.

    Article  CAS  PubMed  Google Scholar 

  123. Hasford J, Baccarani M, Hoffmann V, et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood. 2011;118:686–92.

    Article  CAS  PubMed  Google Scholar 

  124. Pfirrmann M, Baccarani M, Saußele S, et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia. 2016;30(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  125. Sokal JE, Cox EB, Baccarani M, et al. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood. 1984;63:789–99.

    Article  CAS  PubMed  Google Scholar 

  126. Verma D, Kantarjian HM, Jones D, et al. Chronic myeloid leukemia (CML) with P190BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood. 2009;114:2232–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122:872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hanfstein B, Müller MC, Hehlmann R, et al. Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia. 2012;26:2096–102.

    Article  CAS  PubMed  Google Scholar 

  129. Hehlmann R, Lauseker M, Jung-Munkwitz S, et al. Tolerability-adapted imatinib 800 mg/d versus 400 mg/d versus 400 mg/d plus interferon-a in newly diagnosed chronic myeloid leukemia. J Clin Oncol. 2011;29(12):1634–42.

    Article  CAS  PubMed  Google Scholar 

  130. Jabbour E, Kantarjian H, O’Brien S, et al. The achievement of an early complete cytogenetic response is a major determinant for outcome in patients with early chronic phase chronic myeloid leukemia treated with tyrosine kinase inhibitors. Blood. 2011;118:4541–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Marin D, Ibrahim AR, Lucas C, et al. Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol. 2012;30:232–8.

    Article  CAS  PubMed  Google Scholar 

  132. Branford S, Yeung DT, Parker WT, et al. Prognosis for patients with CML and >10% BCR-ABL1 after 3 months of imatinib depends on the rate of BCR-ABL1 decline. Blood. 2014;124:511–8.

    Article  CAS  PubMed  Google Scholar 

  133. Hanfstein B, Shlyakhto V, Lauseker M, et al. Velocity of early BCR-ABL transcript elimination as an optimized predictor of outcome in chronic myeloid leukemia (CML) patients in chronic phase on treatment with imatinib. Leukemia. 2014;28:1988–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the ELN Foundation, Weinheim. RS acknowledges support by the Cancer Research and Treatment Fund, Inc., New York, New York.

The contribution of Johannes Hehlmann M.A. is acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hehlmann, R., Saußele, S., Voskanyan, A., Silver, R.T. (2021). CML End Phase and Blast Crisis: Implications and Management. In: Hehlmann, R. (eds) Chronic Myeloid Leukemia. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-71913-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71913-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71912-8

  • Online ISBN: 978-3-030-71913-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics