Skip to main content

Machine Learning Models Applied to Weather Series Analysis

  • Conference paper
  • First Online:
Metadata and Semantic Research (MTSR 2020)

Abstract

In recent years the explosion in high-performance computing systems and high-capacity storage has led to an exponential increase in the amount of information, generating the phenomenon of big data and the development of automatic processing models like machine learning analysis. In this paper a machine learning time series analysis was experimentally developed in relation to the paroxysmal meteorological event “cloudburst” characterized by a very intense storm, concentrated in a few hours and highly localized. These extreme phenomena such as hail, overflows and sudden floods are found in both urban and rural areas. The predictability over time of these phenomena is very short and depends on the event considered, therefore it is useful to add data driven methods to the deterministic modeling tools to get the anticipated predictability of the event, also known as nowcasting. The detailed knowledge of these phenomena, together with the development of simulation models for the propagation of cloudbursts, can be a useful tool for monitoring and mitigating risk in civil protection contingency plans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simas, F., Barros, R., Salvador, L., Weber, M., Amorim, S.: A data exchange tool based on ontology for emergency response systems. In: Garoufallou, E., Virkus, S., Siatri, R., Koutsomiha, D. (eds.) MTSR 2017. CCIS, vol. 755, pp. 74–79. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70863-8_7

    Chapter  Google Scholar 

  2. Li, J., Liu, L., Le Duy, T., Liu, J.: Accurate data-driven prediction does not mean high reproducibility. Nat. Mach. Intell. (2020). https://doi.org/10.1038/s42256-019-0140-2

    Article  Google Scholar 

  3. Almanacco della Scienza CNR, n. 9 (2017)

    Google Scholar 

  4. Rezzani A.: Big Data. Maggioli editore (2013)

    Google Scholar 

  5. Wan, Z., Vlachas, P., Koumoutsakos, P., Sapis, T.: Data assisted reduced-order modeling of extreme events in complex dynamical systems. Plos One 13, e0197704 (2018)

    Google Scholar 

  6. Ozdemir, S.: Data Science, Apogeo (2018)

    Google Scholar 

  7. Virkus, S., Garoufallou, E.: Data science from a perspective of computer science. In: Garoufallou, E., Fallucchi, F., William De Luca, E. (eds.) MTSR 2019. CCIS, vol. 1057, pp. 209–219. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36599-8_19

    Chapter  Google Scholar 

  8. Zschocke, T., Villagrán de León, J.C., Beniest, J.: Enriching the description of learning resources on disaster risk reduction in the agricultural domain: an ontological approach. In: Sánchez-Alonso, S., Athanasiadis, Ioannis N. (eds.) MTSR 2010. CCIS, vol. 108, pp. 320–330. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16552-8_29

    Chapter  Google Scholar 

  9. Hosni, H., Vulpiani, A.: Forecasting in light of big data. Physics 31, 557–569 (2017)

    Google Scholar 

  10. Gründer-Fahrer, S., Schlaf, A., Wustmann, S.: How social media text analysis can inform disaster management. In: Rehm, G., Declerck, T. (eds.) GSCL 2017. LNCS (LNAI), vol. 10713, pp. 199–207. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73706-5_17

    Chapter  Google Scholar 

  11. Pathak, J., et al.: Hybrid forecasting of chaotic processes: using machine learning in conjunction with a knowledge-based model. American Institute of Physics (2018)

    Google Scholar 

  12. Mandrioli, D.: Paola Spoletini P.: Informatica Teorica. CittàStudi edizioni (2011)

    Google Scholar 

  13. Melucci, M.: Information retrieval. Franco Angeli (2013)

    Google Scholar 

  14. Russell, S., Norvig, P.: Intelligenza Artificiale, vol. 1-2. Pearson, London (2010)

    Google Scholar 

  15. Sipser, M.: Introduzione alla teoria della computazione, Maggioli Editore (2016)

    Google Scholar 

  16. Fallucchi, F., Tarquini, M., De Luca, E.W.: Knowledge management for the support of logistics during humanitarian assistance and disaster relief (HADR). In: Díaz, P., Bellamine Ben Saoud, N., Dugdale, J., Hanachi, C. (eds.) ISCRAM-med 2016. LNBIP, vol. 265, pp. 226–233. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47093-1_19

    Chapter  Google Scholar 

  17. David, S., Hrubes, P., Moran, S., Shipilka, A., Yehudayoff, A.: Learnability can be undecidable. Nat. Mach. Intell. 1, 44–48 (2019)

    Google Scholar 

  18. Raschka, S.: Machine Learning con Python. Apogeo (2015)

    Google Scholar 

  19. Libelli, S.M.: Modelli matematici per l’ecologia. Pitagora editrice (1989)

    Google Scholar 

  20. Banbura, M., Giannone, D., Modugno, M., Reichlin, L.: Now-casting and the real-time data flow. European central bank (2013)

    Google Scholar 

  21. Santos, L., Sicilia, M., Padrino, S.: Ontologies for emergency response: effect-based assessment as the main ontological commitment. MTSR, 93-104 (2011)

    Google Scholar 

  22. Comincioli, V.: Problemi e modelli matematici nelle scienze applicate. Casa editrice Ambrosiana (1993)

    Google Scholar 

  23. Report annuario dei dati ambientali. ISPRA (2017)

    Google Scholar 

  24. Cammarata, S.: Reti neuronali. Dal Perceptron alle reti caotiche e neurofuzzy. Etas Libri (1997)

    Google Scholar 

  25. Cusani, R., Inzerilli, T.: Teoria dell’Informazione e Codici. Ed. Ingegneria 2000 (2008)

    Google Scholar 

  26. Bergomi, M.G., Frosini, P., Giorgi, D., Quercioli, N.: Towards a topologicalgeometrical theory of group equivariant non-expansive operators for data analysis and machine learning. Nat. Mach. Intell. 1(9), 423–433 (2019)

    Google Scholar 

  27. Hickey, J.: Using machine learning to “Nowcast” precipitation in high resolution. Google AI Blog (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Fallucchi .

Editor information

Editors and Affiliations

Ethics declarations

Data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest. Authors declare that there are no conflicts of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fallucchi, F., Scano, R., De Luca, E.W. (2021). Machine Learning Models Applied to Weather Series Analysis. In: Garoufallou, E., Ovalle-Perandones, MA. (eds) Metadata and Semantic Research. MTSR 2020. Communications in Computer and Information Science, vol 1355. Springer, Cham. https://doi.org/10.1007/978-3-030-71903-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71903-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71902-9

  • Online ISBN: 978-3-030-71903-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics