Skip to main content

A New Efficient Quantum Digital Signature Scheme for Multi-bit Messages

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12612))

Included in the following conference series:

Abstract

Quantum digital signatures (QDS) is a cryptography primitive based on quantum mechanics, and has the same role as the classical digital signature. Many novel QDS protocols have been proposed, which can guarantee the information-theoretic security of the signature for a single bit against forging and denying. Recently, T.Y. Wang et al. first proposed a QDS scheme satisfying multi-bit security which based on arbitrary single-bit signature scheme. However, their coding scheme requires \(2n+4\) signature keys to sign a classical n-bit message. In this paper, we propose a more efficient protocol for signing multi-bit message. We need about \(1.5n+7\) signature keys for a n-bit message.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)

  2. Jrn, M.Q.: Quantum pseudosignatures. J. Mod. Opt. 49, 1269–1276 (2002)

    Article  MathSciNet  Google Scholar 

  3. Lu, X., Feng, D.G.: Quantum digital signature based on quantum one-way functions. ICACT 1, 514–517 (2005)

    Google Scholar 

  4. Clarke, P.J., Collins, R.J., Dunjko, V., et al.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3, 1174 (2012)

    Article  Google Scholar 

  5. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112, 040502 (2014)

    Article  Google Scholar 

  6. Wallden, P., Dunjko, V., Kent, A., et al.: Quantum digital signatures with quantum key distribution components. Phys. Rev. A 91, 042304 (2015)

    Article  Google Scholar 

  7. Donaldson, R.J., Collins, R.J., Kleczkowska, K., et al.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A 93(1), 012329 (2016)

    Article  Google Scholar 

  8. Collins, R.J., Amiri, R., Fujiwara, M., et al.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett. 41(21), 4883–4886 (2016)

    Article  Google Scholar 

  9. Yin, H.L., Fu, Y., Liu, H., et al.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95(3), 032334 (2017)

    Article  Google Scholar 

  10. Yin, H.L., Wang, W.L., Tang, Y.L., et al.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95(4), 042338 (2017)

    Article  Google Scholar 

  11. Roberts, G.L., Lucamarini, M., Yuan, Z.L., et al.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8(1), 1098 (2017)

    Article  Google Scholar 

  12. Collins, R.J., Amiri, R., Fujiwara, M., et al.: Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution. Sci. Rep. 7(1), 3235 (2017)

    Article  Google Scholar 

  13. Wang, C., Song, X.T., Yin, Z.Q., et al.: Phase-reference-free experiment of measurement-deviceindependent quantum key distribution. Phys. Rev. Lett. 115(16), 160502 (2015)

    Article  Google Scholar 

  14. Yin, H.L., Chen, T.Y., Yu, Z.W., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)

    Article  Google Scholar 

  15. Wang, C., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4(9), 1016–1023 (2017)

    Article  Google Scholar 

  16. Wang, T.Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)

    Article  Google Scholar 

  17. Wang, T.-Y., Ma, J.-F., Cai, X.-Q.: The postprocessing of quantum digital signatures. Quantum Inf. Process. 16(1), 1–10 (2016). https://doi.org/10.1007/s11128-016-1460-3

    Article  MathSciNet  Google Scholar 

  18. Wang, M.Q., Wang, X., Zhan, T.: An efficient quantum digital signature for classical messages. Quantum Inf. Process. 17(10), 275 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are supported by National Cryptography Development Fund (Grant No. MMJJ20180210) and National Natural Science Foundation of China (Grant No. 61832012 and No. 61672019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Wang, M. (2021). A New Efficient Quantum Digital Signature Scheme for Multi-bit Messages. In: Wu, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2020. Lecture Notes in Computer Science(), vol 12612. Springer, Cham. https://doi.org/10.1007/978-3-030-71852-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71852-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71851-0

  • Online ISBN: 978-3-030-71852-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics