Skip to main content

Pulmonary Artery Thermodilution

  • Chapter
  • First Online:
Advanced Hemodynamic Monitoring: Basics and New Horizons

Abstract

The pulmonary artery catheter (PAC) has lost its popularity during the last years giving way to supposedly less invasive hemodynamic monitoring devices such as transpulmonary thermodilution techniques, pulse contour analysis, and echocardiography. Nevertheless, it is still the gold standard for cardiac output measurements via pulmonary artery thermodilution (PATD). Furthermore, a PAC is the only device offering the possibility to assess and monitor pulmonary artery pressure and right ventricular function continuously. PATD is valuable in situations where a comprehensive view of the hemodynamic situation is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283:447–51.

    Article  CAS  Google Scholar 

  2. Ventetuolo CE, Klinger JR. Management of acute right ventricular failure in the intensive care unit. Ann Am Thorac Soc. 2014;11:811–22.

    Article  Google Scholar 

  3. Branthwaite MA, Bradley RD. Measurement of cardiac output by thermal dilution in man. J Appl Physiol. 1968;24:434–8.

    Article  CAS  Google Scholar 

  4. Weir-McCall JR, Struthers AD, Lipworth BJ, Houston JG. The role of pulmonary arterial stiffness in COPD. Respir Med. 2015;109:1381–90.

    Article  Google Scholar 

  5. Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119.

    Article  Google Scholar 

  6. Mehra MR, Canter CE, Hannan MM, Semigran MJ, Uber PA, Baran DA, Danziger-Isakov L, Kirklin JK, Kirk R, Kushwaha SS, Lund LH, Potena L, Ross HJ, Taylor DO, Verschuuren EAM, Zuckermann A. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transpl. 2016;35:1–23.

    Article  Google Scholar 

  7. Lankhaar J-W, Westerhof N, Faes TJC, Marques KMJ, Marcus JT, Postmus PE, Vonk-Noordegraaf A. Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2006;291:H1731–7.

    Article  CAS  Google Scholar 

  8. Choi J-O, Lee S-C, Choi SH, Kim SM, Choi JH, Park JR, Song BG, Chang S-A, Park S-J, Park SW, Park PW. Noninvasive assessment of left ventricular stroke work index in patients with severe mitral regurgitation: correlation with invasive measurement and exercise capacity. Echocardiography (Mount Kisco, N.Y.). 2010;27:1161–9.

    Article  Google Scholar 

  9. Kashiyama N, Toda K, Miyagawa S, Yoshikawa Y, Hata H, Yoshioka D, Sawa Y. Left ventricular stroke work index associated with outcome after mitral valve surgery for functional regurgitation in nonischemic dilated cardiomyopathy. Semin Thorac Cardiovasc Surg. 2020;32(4):698–709.

    Article  Google Scholar 

  10. Kanjanahattakij N, Sirinvaravong N, Aguilar F, Agrawal A, Krishnamoorthy P, Gupta S. High right ventricular stroke work index is associated with worse kidney function in patients with heart failure with preserved ejection fraction. Cardior Med. 2018;8:123–9.

    Article  Google Scholar 

  11. Fukamachi K, McCarthy PM, Smedira NG, Vargo RL, Starling RC, Young JB. Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion. Ann Thorac Surg. 1999;68:2181–4.

    Article  CAS  Google Scholar 

  12. Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ, Provencher S, Torbicki A, Voelkel NF, Hassoun PM. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62:D22–33.

    Article  Google Scholar 

  13. Robitaille A, Denault AY, Couture P, Belisle S, Fortier A, Guertin M-C, Carrier M, Martineau R. Importance of relative pulmonary hypertension in cardiac surgery: the mean systemic-to-pulmonary artery pressure ratio. J Cardiothorac Vasc Anesth. 2006;20:331–9.

    Article  Google Scholar 

  14. Saydain G, Awan A, Manickam P, Kleinow P, Badr S. Pulmonary hypertension an Independent risk factor for death in intensive care unit: correlation of hemodynamic factors with mortality. Clin Med Insights Circ Respir Pulm Med. 2015;9:27–33.

    Article  Google Scholar 

  15. Dupont M, Mullens W, Skouri HN, Abrahams Z, Wu Y, Taylor DO, Starling RC, Tang WHW. Prognostic role of pulmonary arterial capacitance in advanced heart failure. Circ Heart Fail. 2012;5:778–85.

    Article  Google Scholar 

  16. Al-Naamani N, Preston IR, Hill NS, Roberts KE. The prognostic significance of pulmonary arterial capacitance in pulmonary arterial hypertension: single-center experience. Pulm Circ. 2016;6:608–10.

    Article  Google Scholar 

  17. Mahapatra S, Nishimura RA, Sorajja P, Cha S, McGoon MD. Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J Am Coll Cardiol. 2006;47:799–803.

    Article  Google Scholar 

  18. Kane PB, Askanazi J, Neville JF, Mon RL, Hanson EL, Webb WR. Artifacts in the measurement of pulmonary artery wedge pressure. Crit Care Med. 1978;6:36–8.

    Article  CAS  Google Scholar 

  19. Nadeau S, Noble WH. Misinterpretation of pressure measurements from the pulmonary artery catheter. Can Anaesth Soc J. 1986;33:352–63.

    Article  CAS  Google Scholar 

  20. Synder JV, Powner DJ. Effects of mechanical ventilation on the measurement of cardiac output by thermodilution. Crit Care Med. 1982;10:677–82.

    Article  CAS  Google Scholar 

  21. Woods M, Scott RN, Harken AH. Practical considerations for the use of a pulmonary artery thermistor catheter. Surgery. 1976;79:469–75.

    CAS  PubMed  Google Scholar 

  22. Stevens JH, Raffin TA, Mihm FG, Rosenthal MH, Stetz CW. Thermodilution cardiac output measurement. Effects of the respiratory cycle on its reproducibility. JAMA. 1985;253:2240–2.

    Article  CAS  Google Scholar 

  23. Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, Young D, Harvey S, Rowan K. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev. 2013:CD003408.

    Google Scholar 

  24. Connors AF, Speroff T, Dawson NV, Thomas C, Harrell FE, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT investigators. JAMA. 1996;276:889–97.

    Article  Google Scholar 

  25. Singh K, Mayo P. Critical care echocardiography and outcomes in the critically ill. Curr Opin Crit Care. 2018;24(4):316–21.

    Google Scholar 

  26. Squara P, Bennett D, Perret C. Pulmonary artery catheter: does the problem lie in the users? Chest. 2002;121:2009–15.

    Article  Google Scholar 

  27. Poli de Figueiredo LF, Malbouisson LM, Varicoda EY, Carmona MJ, Auler JO, Rocha e Silva M. Thermal filament continuous thermodilution cardiac output delayed response limits its value during acute hemodynamic instability. J Trauma. 1999;47:288–93.

    Article  CAS  Google Scholar 

  28. Reuter DA, Huang C, Edrich T, Shernan SK, Eltzschig HK. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg. 2010;110:799–811.

    Article  Google Scholar 

  29. Tewelde SZ, Liu SS, Winters ME. Cardiogenic shock. Cardiol Clin. 2018;36:53–61.

    Article  Google Scholar 

  30. Saugel B, Vincent J-L. Cardiac output monitoring: how to choose the optimal method for the individual patient. Curr Opin Crit Care. 2018;24:165–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelie Zitzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zitzmann, A., Reuter, D.A., Löser, B. (2021). Pulmonary Artery Thermodilution. In: Kirov, M.Y., Kuzkov, V.V., Saugel, B. (eds) Advanced Hemodynamic Monitoring: Basics and New Horizons. Springer, Cham. https://doi.org/10.1007/978-3-030-71752-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71752-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71751-3

  • Online ISBN: 978-3-030-71752-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics