Skip to main content

Systemic Arterial Pressure

  • Chapter
  • First Online:
Advanced Hemodynamic Monitoring: Basics and New Horizons

Abstract

In this chapter, practical aspects of systemic arterial blood pressure measurement and monitoring are discussed in the evolutional context. The oscillometric method of non-invasive blood pressure monitoring, invasive direct monitoring via an intra-arterial catheter and the vascular unloading (volume clamp) technique of continuous non-invasive arterial pressure monitoring are described with special attention to the sources and mechanisms of errors, artifacts, pitfalls, and adverse events. Special attention is also paid to the modern strategy of systemic arterial pressure management in anesthesiology and intensive care, based on the real-time monitoring data and optimal pressure targeting in relation to the patient’s individual baseline blood pressure level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avolio AP, Kuznetsova T, Heyndrickx GR, Kerkhof PLM, Li JK-J. Arterial flow, pulse pressure and pulse wave velocity in men and women at various ages. Adv Exp Med Biol. 2018;1065:153–68.

    Article  Google Scholar 

  2. Sugo Y, Ukawa T, Takeda S, Ishihara H, Kazama T, Takeda Z. A novel continuous cardiac output monitor based on pulse wave transit time. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2853–6.

    Google Scholar 

  3. Suzuki T, Suzuki Y, Okuda J, Minoshima R, Misonoo Y, Ueda T, Kato J, Nagata H, Yamada T, Morisaki H. Cardiac output and stroke volume variation measured by the pulse wave transit time method: a comparison with an arterial pressure-based cardiac output system. J Clin Monit Comput. 2019;33:385–92.

    Article  Google Scholar 

  4. Kam P, Power I. Principles of physiology for the anaesthetist. 3rd ed. CRC Press; 2015. 478 p.

    Google Scholar 

  5. Ackland GL, Brudney CS, Cecconi M, Ince C, Irwin MG, et al. Perioperative Quality Initiative consensus statement on the physiology of arterial blood pressure control in perioperative medicine. Br J Anaesth. 2019;122(5):542–51.

    Article  Google Scholar 

  6. Sun LY, Chung AM, Farkouh ME, van Diepen S, Weinberger J, Bourke M, Ruel M. Defining an intraoperative hypotension threshold in association with stroke in cardiac surgery. Anesthesiology. 2018;129(3):440–7.

    Article  Google Scholar 

  7. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.

    Article  Google Scholar 

  8. Sun LY, Wijeysundera DN, Tait GA, Beattie WS. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology. 2015;123(3):515–23.

    Article  Google Scholar 

  9. Tang Y, Zhu C, Liu J, Wang A, Duan K, Li B, Yuan H, Zhang H, Yao M, Ouyang W. Association of intraoperative hypotension with acute kidney injury after noncardiac surgery in patients younger than 60 years old. Kidney Blood Press Res. 2019;44(2):211–21.

    Article  CAS  Google Scholar 

  10. Hall JE. Guyton and Hall textbook of medical physiology. 12th ed. Philadelphia: Saunders Elsevier; 2011. 1091 p.

    Google Scholar 

  11. Albinali HHA. 4,500-year voyage: from pulse tension to hypertension. Heart Views. 2005;6(3):124–33.

    Google Scholar 

  12. Kim OJ. Experimental sciences in surgery: Harvey Cushing’s work at the turn of the twentieth century. Korean J Med Hist. 2006;15:49–76.

    Google Scholar 

  13. Gravlee GP, Martin DE, Bartels K, editors. Hensley’s practical approach to cardiothoracic anesthesia. 6th ed. Walters Kluwer; 2018. 848 p.

    Google Scholar 

  14. Bennett D. Arterial pressure: a personal view. In: Pinsky M, Payen D, editors. Functional hemodynamic monitoring. Berlin, Heidelberg, New York: Springer; 2005. p. 89–97.

    Chapter  Google Scholar 

  15. Ragosta M. Textbook of clinical hemodynamics. Saunders Elsevier; 2008. 478 p.

    Google Scholar 

  16. Haddad F, Zeeni C, El Rassi I, Yazigi A, Madi-Jebara S, Hayeck G, Jebara V, Yazbeck P. Can femoral artery pressure monitoring be used routinely in cardiac surgery? J Cardiothorac Vasc Anesth. 2008;22(3):418–22.

    Article  Google Scholar 

  17. Lebedinskii KM. Arterial pressure monitoring. In: Lebedinskii KM, editor. Circulation and anesthesia. 2nd ed. St.-Peterburg: Chelovek; 2015. p. 141–71. (In Russian).

    Google Scholar 

  18. Trevino RJ, Jones DL, Escobedo D, Porterfield J, Larson E, Chisholm GB, Barton A, Feldman MD. Validation of a new micro-manometer pressure sensor for cardiovascular measurements in mice. Biomed Instrum Technol. 2010;44(1):75–83.

    Article  Google Scholar 

  19. Wax DB, Lin H-M, Leibowitz AB. Invasive and concomitant noninvasive intraoperative blood pressure monitoring: observed differences in measurements and associated therapeutic interventions. Anesthesiology. 2011;115:973–8.

    Article  Google Scholar 

  20. Raggi EP, Sakai T. Update on finger-application-type noninvasive continuous hemodynamic monitors (CNAP and ccNexfin): physical principles, validation, and clinical use. Semin Cardiothorac Vasc Anesth. 2017;21(4):321–9.

    Article  Google Scholar 

  21. Fortin J, Wellisch A, Maier K. CNAP—evolution of continuous non-invasive arterial blood pressure monitoring. Biomed Tech (Berl). 2013;58(Suppl 1):4179.

    Google Scholar 

  22. Imholz BPM, Wieling W, van Montfrans GA, Wesseling KH. Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res. 1998;38:605–16.

    Article  CAS  Google Scholar 

  23. Chin KY, Panerai RB. Comparative study of Finapres devices. Blood Press Monit. 2012;17(4):171–8.

    Article  Google Scholar 

  24. Heeney ND, Habib F, Brar GK, Krahn G, Campbell DA, Sanatani S, Claydon VE. Validation of finger blood pressure monitoring in children. Blood Press Monit. 2019;24(3):137–45.

    Article  Google Scholar 

  25. Lebedinskii KM, Kovalenko AN, Kurapeev IS, Karelov AE, Len’kin AI, Subbotin VV, Volkov PA, Martynov DV. Physical and physiological problems of medical monitoring. Tech Phys. 2020;65(9):1343–59.

    Article  CAS  Google Scholar 

  26. Meng L, Yu W, Wang T, Zhang L, Heerdt PM, Gelb AW. Blood pressure targets in perioperative care. Hypertension. 2018;72(4):806–17.

    Article  CAS  Google Scholar 

  27. Mason AA, Pelmore JF. Combined use of hexamethonium bromide and procaine amide in controlled hypotension: a preliminary report. Br Med J. 1953;1:250.

    Article  CAS  Google Scholar 

  28. Griffith HWC, Gillies J. Thoraco-lumbar splanchnicectomy and sympathectomy, anaesthetic procedure. Anaesthesia. 1948;3:134–40.

    Article  Google Scholar 

  29. Sivarajan M, Amory DW, Everett GB, et al. Blood pressure, not cardiac output, determines blood loss during induced hypotension. Anesth Analg. 1980;59:203–6.

    Article  CAS  Google Scholar 

  30. Utting JE. Pitfalls in anaesthetic practice. Br J Anaesth. 1987;59:877–90.

    Article  CAS  Google Scholar 

  31. Degoute CS. Controlled hypotension: a guide to drug choice. Drugs. 2007;67(7):1053–76.

    Article  CAS  Google Scholar 

  32. Leigh JM. The history of controlled hypotension. Br J Anaesth. 1975;47(7):745–9.

    Article  CAS  Google Scholar 

  33. Gillespie R, Shishani Y, Streit J, Wanner JP, McCrum C, Syed T, Haas A, Gobezie R. The safety of controlled hypotension for shoulder arthroscopy in the beach-chair position. J Bone Joint Surg Am. 2012;94(14):1284–90.

    Article  Google Scholar 

  34. Lim TS, Hong JM, Lee JS, Shin DH, Choi JY, Huh K. Induced-hypertension in progressing lacunar infarction. J Neurol Sci. 2011;308(1–2):72–6.

    Article  Google Scholar 

  35. Francoeur CL, Mayer SA. Management of delayed cerebral ischemia after subarachnoid hemorrhage. Crit Care. 2016;20(1):277.

    Article  Google Scholar 

  36. Lebedinskii KM, Karelov AE, Lebedinskaia OV, Shevkulenko DA, Bestayev GG. Hemodynamic test for surgical hemostasis consistency. In: Lebedinskii KM, editor. Circulation and anesthesia. 2nd ed. St.-Peterburg: Chelovek; 2015. p. 551–6. (In Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin M. Lebedinskii .

Editor information

Editors and Affiliations

Ethics declarations

None.

Funding

None.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lebedinskii, K.M., Mikhaleva, Y.B. (2021). Systemic Arterial Pressure. In: Kirov, M.Y., Kuzkov, V.V., Saugel, B. (eds) Advanced Hemodynamic Monitoring: Basics and New Horizons. Springer, Cham. https://doi.org/10.1007/978-3-030-71752-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71752-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71751-3

  • Online ISBN: 978-3-030-71752-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics