Skip to main content

Topical Oral and Intranasal Antiviral Agents for Coronavirus Disease 2019 (COVID-19)

  • Chapter
  • First Online:
Identification of Biomarkers, New Treatments, and Vaccines for COVID-19

Abstract

With the largest viral loads in both symptomatic and asymptomatic patients with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) present in the oral and nasal cavities, agents that act on these two areas have the potential for large therapeutic and prophylactic benefit. A literature review was conducted to elucidate the possible agents useful in treatment of SARS-CoV-2. These agents were evaluated for their current applications, adverse reactions, their current state of study, and any future considerations in their management of coronavirus disease 2019 (COVID-2019). Our review has found that, while there are many promising agents with proven efficacy in their in-vitro efficacy against SARS-CoV-2, more clinical trials and in-vivo studies, as well as safety trials, must be conducted before these agents can be effectively implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu YC, Chen CS, Chan YJ (2020) The outbreak of COVID-19: an overview. J Chin Med Assoc 83:217–220

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu X, Zhang S (2020) COVID-19: face masks and human-to-human transmission. Influenza Other Respir Viruses. https://doi.org/10.1111/irv.12740

  3. Yang C (2020) Does hand hygiene reduce SARS-CoV-2 transmission? Graefes Arch Clin Exp Ophthalmol 258(5):1133–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lai THT, Tang EWH, Fung KSC, Li KKW (2020) Reply to “does hand hygiene reduce SARS-CoV-2 transmission?”. Graefes Arch Clin Exp Ophthalmol 258(5):1135. https://doi.org/10.1007/s00417-020-04653-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R (2020) Features, evaluation, and treatment of coronavirus. In: StatPearls. StatPearls Publishing, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK554776/

  6. Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS et al (2020) Coronavirus disease 2019–COVID-19. Microbiol Rev 33(4):e00028–e00020. https://doi.org/10.1128/CMR.00028-20

    Article  CAS  Google Scholar 

  7. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z et al (2020) SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 382(12):1177–1179. https://doi.org/10.1056/NEJMc2001737

    Article  PubMed  PubMed Central  Google Scholar 

  8. Baghizadeh Fini M (2020) Oral saliva and COVID-19. Oral Oncol 108:104821. https://doi.org/10.1016/j.oraloncology.2020.104821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu R, Cui B, Duan X, Zhang P, Zhou X, Yuan Q (2020) Saliva: potential diagnostic value and transmission of 2019-nCoV. Int J Oral Sci 12(6):11. https://doi.org/10.1038/s41368-020-0080-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR et al (2020) The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 172(9):577–582

    Article  PubMed  Google Scholar 

  11. Wang H, Liu Q, Hu J, Zhou M, Yu MQ, Li KY et al (2020) Nasopharyngeal swabs are more sensitive than oropharyngeal swabs for COVID-19 diagnosis and monitoring the SARS-CoV-2 load. Front Med 7:334. https://doi.org/10.3389/fmed.2020.00334

    Article  Google Scholar 

  12. Ascenzi JM (1996) Handbook of disinfectants and antiseptics. CRC Press, Boca Raton. ISBN-13: 978-0824795245

    Google Scholar 

  13. Singh D, Joshi K, Samuel A, Patra J, Mahindroo N (2020) Alcohol-based hand sanitisers as first line of defence against SARS-CoV-2: a review of biology, chemistry and formulations. Epidemiol Infect 148:e229. https://doi.org/10.1017/S0950268820002319

    Article  CAS  PubMed  Google Scholar 

  14. World Health Organization Guide to Local Production: WHO-recommended handrub formulations. https://www.who.int/gpsc/5may/Guide_to_Local_Production.pdf?ua=1. Accessed 20 Oct 2020

  15. CDC (2020) Coronavirus disease 2019 (COVID-19). In: Centers for disease control and prevention. https://www.cdc.gov/coronavirus/2019-ncov/hcp/hand-hygiene.html. Accessed 31 Oct 2020

  16. Siddharta A, Pfaender S, Vielle NJ, Dijkman R, Friesland M, Becker B et al (2017) Virucidal activity of World Health Organization–recommended formulations against enveloped viruses, including Zika, Ebola, and Emerging Coronaviruses. J Infect Dis 215(6):902–906

    Article  CAS  PubMed  Google Scholar 

  17. Rabenau HF, Kampf G, Cinatl J, Doerr HW (2005) Efficacy of various disinfectants against SARS coronavirus. J Hosp Infect 61(2):107–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hirose R, Ikegaya H, Naito Y, Watanabe N, Yoshida T, Bandou R et al (2020) Survival of SARS-CoV-2 and influenza virus on the human skin: importance of hand hygiene in COVID-19. Clin Infect Dis:ciaa1517. https://doi.org/10.1093/cid/ciaa1517. Online ahead of print

  19. Kratzel A, Todt D, V’kovski P, Steiner S, Gultom M, Thao TTN et al (2020) Inactivation of severe acute respiratory syndrome coronavirus 2 by WHO-recommended hand rub formulations and alcohols. Emerg Infect Dis 26(7):1592–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leslie RA, Zhou SS, Macinga DR (2020) Inactivation of SARS-CoV-2 by commercially available alcohol-based hand sanitizers. Am J Infect Control:S0196--6553(20)30804-X. https://doi.org/10.1016/j.ajic.2020.08.020. Online ahead of print

  21. Steed LL, Costello J, Lohia S, Jones T, Spannhake EW, Nguyen S (2014) Reduction of nasal Staphylococcus aureus carriage in health care professionals by treatment with a nonantibiotic, alcohol-based nasal antiseptic. Am J Infect Control 42(8):841–846

    Article  CAS  PubMed  Google Scholar 

  22. Kanwar A, Kumar JA, Ng-Wong YK, Thakur M, Cadnum JL, Alhmidi H et al (2019) Evaluation of an alcohol-based antiseptic for nasal decolonization of methicillin-resistant Staphylococcus aureus in colonized patients. Infect Control Hosp Epidemiol 40(12):1436–1437

    Article  PubMed  Google Scholar 

  23. Meyers C, Robison R, Milici J, Alam S, Quillen D, Goldenberg D et al (2020) Lowering the transmission and spread of human coronavirus. J Med Virol. https://doi.org/10.1002/jmv.26514. Online ahead of print

  24. Meister TL, Brüggemann Y, Todt D, Conzelmann C, Müller JA, Groß R et al (2020) Virucidal efficacy of different oral rinses against severe acute respiratory syndrome coronavirus 2. J Infect Dis 222(8):1289–1292

    Article  CAS  PubMed  Google Scholar 

  25. Antiseptic Mouthwash / Pre-Procedural Rinse on SARS-CoV-2 Load (COVID-19) – ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04409873. Accessed 31 Oct 2020

  26. Frank S, Capriotti J, Brown SM, Tessema B (2020) Povidone-iodine use in sinonasal and oral cavities: a review of safety in the COVID-19 era. Ear Nose Throat J 99(9):586–593

    Article  PubMed  Google Scholar 

  27. Sriwilaijaroen N, Wilairat P, Hiramatsu H, Takahashi T, Suzuki T, Ito M et al (2009) Mechanisms of the action of povidone-iodine against human and avian influenza A viruses: its effects on hemagglutination and sialidase activities. Virol J 6:124. https://doi.org/10.1186/1743-422X-6-124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eggers M, Koburger-Janssen T, Eickmann M, Zorn J (2018) In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. Infect Dis Ther 7(2):249–259

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kariwa H, Fujii N, Takashima I (2006) Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology 212 Suppl 1(Suppl 1):119–123

    Article  CAS  Google Scholar 

  30. 3M (2016) Safety & Efficacy Information; 3MTM Skin and Nasal Antiseptic. https://multimedia.3m.com/mws/media/716788O/3m-skin-and-nasal-antiseptic-safety-and-efficacy-brochure.pdf. Accessed 31 Oct 2020

  31. Frank S, Brown SM, Capriotti JA, Westover JB, Pelletier JS, Tessema B (2020) In vitro efficacy of a povidone-iodine nasal Antiseptic for rapid inactivation of SARS-CoV-2. JAMA Otolaryngol Head Neck Surg. Sep 17:e203053. https://doi.org/10.1001/jamaoto.2020.3053. Online ahead of print

  32. Bidra AS, Pelletier JS, Westover JB, Bidra AS, Pelletier JS, Westover JB, Frank S, Brown SM, Tessema B (2020) Rapid in-vitro inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using povidone-iodine Oral antiseptic rinse. J Prosthodont 29(6):529–533

    Article  PubMed  Google Scholar 

  33. Kirk-Bayley J (2020) A pilot study of the ability of povidone-iodine (PVP-I) 0•5% aqueous solution oral/nasal spray and mouthwash to kill the SARS-CoV-2 virus. http://www.isrctn.com/ISRCTN13447477. Accessed 31 Oct 2020

  34. Khan FR (2020) A clinical trial of gargling agents in reducing intraoral viral load among COVID-19 patients (GARGLES). https://clinicaltrials.gov/ct2/show/NCT04341688. Accessed 31 Oct 2020

  35. Friedland P (2020) Virucidal pilot study of Nasodine® Antiseptic Nasal Spray (povidone-iodine 0.5%) in people with COVID-19 and confirmed nasal shedding of SARS-CoV-2 virus. https://anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12620000470998. Accessed 31 Oct 2020

  36. Kejner A (2020) Povidone-iodine intranasal for prophylaxis in front-line health-care personnel and inpatients during the sars-CoV-2 pandemic. https://clinicaltrials.gov/ct2/show/NCT04364802. Accessed 31 Oct 2020

  37. Managutti A, Managutti SA, Patel J, Puthanakar NY (2017) Evaluation of post-surgical bacteremia with use of povidone-iodine and chlorhexidine during mandibular third molar surgery. J Maxillofac Oral Surg 16(4):485–490

    Article  PubMed  Google Scholar 

  38. Nagatake T, Ahmed K, Oishi K (2002) Prevention of respiratory infections by povidone-iodine gargle. Dermatology 204(Suppl 1):32–36

    Article  CAS  PubMed  Google Scholar 

  39. Rezapoor M, Nicholson T, Tabatabaee RM, Chen AF, Maltenfort MG, Parvizi J (2017) Povidone-iodine-based solutions for decolonization of nasal Staphylococcus aureus: a randomized, prospective, placebo-controlled study. J Arthroplast 32(9):2815–2819

    Article  Google Scholar 

  40. Kim JH, Rimmer J, Mrad N, Ahmadzada S, Harvey RJ et al (2015) Betadine has a ciliotoxic effect on ciliated human respiratory cells. J Laryngol Otol 129(Suppl 1):S45–S50

    Article  PubMed  Google Scholar 

  41. Ramezanpour M, Smith JLP, Psaltis AJ, Wormald PJ, Vreugde S (2020) In vitro safety evaluation of a povidone-iodine solution applied to human nasal epithelial cells. Int Forum Allergy Rhinol. Apr 6. https://doi.org/10.1002/alr.22575. Online ahead of print

  42. Nobukuni K, Hayakawa N, Namba R, Ihara Y, Sato K, Takada H et al (1997) The influence of long-term treatment with povidone-iodine on thyroid function. Dermatology 195(Suppl 2):69–72

    Article  PubMed  Google Scholar 

  43. Casteels K, Pünt S, Brämswig J (2000) Transient neonatal hypothyroidism during breastfeeding after post-natal maternal topical iodine treatment. Eur J Pediatr 159(9):716–717

    Article  CAS  PubMed  Google Scholar 

  44. Dev Kumar G, Mishra A, Dunn L, Townsend A, Oguadinma IC, Bright KR et al (2020) Biocides and novel antimicrobial agents for the mitigation of coronaviruses. Front Microbiol 11:1351. https://doi.org/10.3389/fmicb.2020.01351

    Article  PubMed  PubMed Central  Google Scholar 

  45. Goyal SM, Chander Y, Yezli S, Otter JA (2014) Evaluating the virucidal efficacy of hydrogen peroxide vapour. J Hosp Infect 86(4):255–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walsh LJ (2000) Safety issues relating to the use of hydrogen peroxide in dentistry. Aust Dent J 45(4):257–269

    Article  CAS  PubMed  Google Scholar 

  47. Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B (2020) Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci 12(1):9. https://doi.org/10.1038/s41368-020-0075-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kraus FW, Perry WI, Nickerson JF (1958) Salivary catalase and peroxidase values in normal subjects and in persons with periodontal disease. Oral Surg Oral Med Oral Pathol 11(1):95–102

    Article  CAS  PubMed  Google Scholar 

  49. Caruso AA, Del Prete A, Lazzarino AI, Capaldi R, Grumetto L (2020) Might hydrogen peroxide reduce the hospitalization rate and complications of SARS-CoV-2 infection? Infect Control Hosp Epidemiol 41(11):1360–1361

    Article  PubMed  CAS  Google Scholar 

  50. Kampf G, Todt D, Pfaender S, Steinmann E (2020) Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 104(3):246–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bidra AS, Pelletier JS, Westover JB, Frank S, Brown SM, Tessema B (2020) Comparison of in vitro inactivation of SARS CoV-2 with hydrogen peroxide and povidone-iodine oral antiseptic rinses. J Prosthodont. Jun 30. https://doi.org/10.1111/jopr.13220. Online ahead of print

  52. Gottsauner MJ, Michaelides I, Schmidt B, Scholz KJ, Buchalla W, Widbiller M et al (2020) A prospective clinical pilot study on the effects of a hydrogen peroxide mouthrinse on the intraoral viral load of SARS-CoV-2. Clin Oral Investig 24(10):3707–3713

    Article  PubMed  Google Scholar 

  53. Ortega KL, Rech BO, El Haje GLC, Gallo CB, Pérez-Sayáns M, Braz-Silva PH (2020) Do hydrogen peroxide mouthwashes have a virucidal effect? A systematic review. J Hosp Infect. Oct 12;S0195-6701(20)30463-1. https://doi.org/10.1016/j.jhin.2020.10.003. Online ahead of print

  54. Capetti AF, Borgonovo F, Morena V, Lupo A, Cossu MV, Passerini M et al (2020) Short-term inhibition of SARS-CoV-2 by hydrogen peroxide in persistent nasopharyngeal carriers. J Med Virol. Sep 3. https://doi.org/10.1002/jmv.26485. Online ahead of print

  55. Reed NG (2010) The history of ultraviolet germicidal irradiation for air disinfection. Public Health Rep 125(1):15–27

    Article  PubMed  PubMed Central  Google Scholar 

  56. Setlow RB, Grist E, Thompson K, Woodhead AD (1993) Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci USA 90(14):6666–6670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roy S (2017) Impact of UV radiation on genome stability and human health. Adv Exp Med Biol 996:207–219

    Article  CAS  PubMed  Google Scholar 

  58. Balasubramanian D (2000) Ultraviolet radiation and cataract. J Ocul Pharmacol Ther 16(3):285–297

    Article  CAS  PubMed  Google Scholar 

  59. Matsumura Y, Ananthaswamy HN (2004) Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 195(3):298–308

    Article  CAS  PubMed  Google Scholar 

  60. Keil SD, Bengrine A, Bowen R, Marschner S, Hovenga N, Rouse L et al (2015) Inactivation of viruses in platelet and plasma products using a riboflavin-and-UV-based photochemical treatment. Transfusion 55(7):1736–1744

    Article  CAS  PubMed  Google Scholar 

  61. Keil SD, Bowen R, Marschner S (2016) Inactivation of Middle East respiratory syndrome coronavirus (MERS-CoV) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment. Transfusion 56(12):2948–2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Keil SD, Ragan I, Yonemura S, Hartson L, Dart NK, Bowen R (2020) Inactivation of severe acute respiratory syndrome coronavirus 2 in plasma and platelet products using a riboflavin and ultraviolet light-based photochemical treatment. Vox Sang 115(6):495–501

    Article  CAS  PubMed  Google Scholar 

  63. Ragan I, Hartson L, Pidcoke H, Bowen R, Goodrich R (2020) Pathogen reduction of SARS-CoV-2 virus in plasma and whole blood using riboflavin and UV light. PLoS One 15(5):e0233947. https://doi.org/10.1371/journal.pone.0233947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rezaie A, Leite GGS, Melmed GY, Mathur R, Villanueva-Millan MJ, Parodi G et al (2020) Ultraviolet A light effectively reduces bacteria and viruses including coronavirus. PLoS One 15(7):e0236199. https://doi.org/10.1371/journal.pone.0236199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chaux G UVA light device to treat COVID-19. https://clinicaltrials.gov/ct2/show/NCT04572399. Accessed 1 Nov 2020

  66. Koreck AI, Csoma Z, Bodai L, Ignacz F, Kenderessy AS, Kadocsa E et al (2005) Rhinophototherapy: a new therapeutic tool for the management of allergic rhinitis. J Allergy Clin Immunol 115(3):541–547

    Article  PubMed  Google Scholar 

  67. Cingi C, Cakli H, Yaz A, Songu M, Bal C (2010) Phototherapy for allergic rhinitis: a prospective, randomized, single-blind, placebo-controlled study. Ther Adv Respir Dis 4(4):209–213

    Article  PubMed  Google Scholar 

  68. Alyasin S, Nabavizadeh SH, Houshmand H, Esmaeilzadeh H, Jelodar S, Amin R (2016) Short time efficiency of rhinophototherapy in management of patients with allergic rhinitis resistant to medical therapy. Iran J Allergy Asthma Immunol 15(4):317–327

    PubMed  Google Scholar 

  69. Leong SC (2011) Rhinophototherapy: gimmick or an emerging treatment option for allergic rhinitis? Rhinology 49(50):499–506

    CAS  PubMed  Google Scholar 

  70. Dulguerov N, Guinand N, Courvoisier D, Landis BN, Lacroix JS, Hauser C (2017) Rhinophototherapy in chronic rhinosinusitis: a double blind randomized placebo-controlled trial. Rhinology 55(2):106–112

    Article  CAS  PubMed  Google Scholar 

  71. Takada A, Matsushita K, Horioka S, Furuichi Y, Sumi Y (2017) Bactericidal effects of 310 nm ultraviolet light-emitting diode irradiation on oral bacteria. BMC Oral Health 17(1):96. https://doi.org/10.1186/s12903-017-0382-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koreck A, Szechenyi A, Morocz M, Cimpean A, Bella Z, Garaczi E et al (2007) Effects of intranasal phototherapy on nasal mucosa in patients with allergic rhinitis. J Photochem Photobiol B 89(2–3):163–169

    Article  CAS  PubMed  Google Scholar 

  73. Mitchell D, Paniker L, Sanchez G, Bella Z, Garaczi E, Szell M et al (2010) Molecular response of nasal mucosa to therapeutic exposure to broad-band ultraviolet radiation. J Cell Mol Med 14(1–2):313–322

    Article  CAS  PubMed  Google Scholar 

  74. Gasmi Benahmed A, Gasmi A, Arshad M, Shanaida M, Lysiuk R, Peana M et al (2020) Health benefits of xylitol. Appl Microbiol Biotechnol 104(17):7225–7237

    Article  CAS  PubMed  Google Scholar 

  75. Hajiahmadi M, Yegdaneh A, Homayoni A, Parishani H, Moshkelgosha H, Salari-Moghaddam R (2019) Comparative evaluation of efficacy of “green tea” and “green tea with xylitol” mouthwashes on the salivary streptococcus mutans and lactobacillus colony count in children: a randomized clinical trial. J Contemp Dent Pract 20(10):1190–1194

    Article  PubMed  Google Scholar 

  76. Sakallioğlu Ö, Güvenç IA, Cingi C (2014) Xylitol and its usage in ENT practice. J Laryngol Otol 128(7):580–585

    Article  PubMed  Google Scholar 

  77. Lin L, Tang X, Wei J, Dai F, Sun G (2017) Xylitol nasal irrigation in the treatment of chronic rhinosinusitis. Am J Otolaryngol 38(4):383–389

    Article  PubMed  Google Scholar 

  78. Xu ML, Wi GR, Kim HJ, Kim HJ (2016) Ameliorating effect of dietary xylitol on human respiratory syncytial virus (hRSV) infection. Biol Pharm Bull 39(4):540–546

    Article  CAS  PubMed  Google Scholar 

  79. Bansal S, Jonsson CB, Taylor SL, Figueroa JM, Dugour AV, Palacios C et al (2020) Iota-carrageenan and xylitol inhibit SARS-CoV-2 in cell culture. bioRxiv. https://doi.org/10.1101/2020.08.19.225854

  80. Westover JB (2020) Virucidal activity of Xlear compounds vs SARS-CoV-2 virus and rhinovirus-16. http://www.usu.edu/iar. Accessed 31 Oct 2020

  81. Tapparel C (2020) Antiviral activity of Xlear spray against SARS-CoV2. https://www.unige.ch/medecine/mimo/en/groupes/953tapparel/tapparel-vu-group-member/caroline-tapparel-vu/. Accessed 31 Oct 2020

  82. Matos de Opitz CL, Sass P (2020) Tackling antimicrobial resistance by exploring new mechanisms of antibiotic action. Future Microbiol 15:703–708

    Article  CAS  PubMed  Google Scholar 

  83. Mensa B, Howell GL, Scott R, DeGrado WF (2014) Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob Agents Chemother 58(9):5136–5145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Innovation Pharmaceuticals, Inc (2019) Phase 2 study to evaluate the efficacy & safety of brilacidin oral rinse administered daily for 7 weeks in attenuating oral mucositis in patients with head & neck cancer receiving chemoradiation. clinicaltrials.gov

  85. Innovation Pharmaceuticals Reports Positive Topline Results from Phase 2 Placebo-Controlled Trial of Brilacidin for the Prevention of Oral Mucositis in Head and Neck Cancer Patients. In: Innovation Pharmaceuticals Inc. http://www.ipharminc.com/press-release/2017/12/11/innovation-pharmaceuticals-reports-positive-topline-results-from-phase-2-placebo-controlled-trial-of-brilacidin-for-the-prevention-of-oral-mucositis-in-head-and-neck-cancer-patients. Accessed 1 Nov 2020

  86. Bassetti M, Del Puente F, Magnasco L, Giacobbe DR (2020) Innovative therapies for acute bacterial skin and skin-structure infections (ABSSSI) caused by methicillin-resistant Staphylococcus aureus: advances in phase I and II trials. Expert Opin Investig Drugs 29(5):495–506

    Article  CAS  PubMed  Google Scholar 

  87. Innovation Pharmaceuticals, Inc (2020) A phase 1, single dose escalation study to investigate the use of delayed release tablets for colonic delivery of Brilacidin in healthy volunteers. clinicaltrials.gov

  88. Cellceutix Corporation - Brilacidin-Otic. https://web.archive.org/web/20150408051410if_/http://cellceutix.com/brilacidin-otic/#sthash.3BhoLfJG.daTZIyVS.dpbs. Accessed 1 Nov 2020

  89. Kowalski RP, Romanowski EG, Yates KA, Mah FS (2016) An independent evaluation of a novel peptide mimetic, Brilacidin (PMX30063), for ocular anti-infective. J Ocul Pharmacol Ther 32(1):23–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Preprint: Brilacidin, a COVID-19 Drug Candidate, Exhibits Potent In Vitro Antiviral Activity Against SARS-CoV-2. In: Innovation Pharmaceuticals Inc. http://www.ipharminc.com/new-blog/2020/10/30/preprint-brilacidin-a-covid-19-drug-candidate-exhibits-potent-in-vitro-antiviral-activity-against-sars-cov-2. Accessed 1 Nov 2020

  91. Bakovic A, Risner K, Bhalla N, et al (2020) Brilacidin, a COVID-19 drug candidate, exhibits potent in vitro antiviral activity against SARS-CoV-2. Microbiology

    Google Scholar 

  92. Maguire RA, Zacharopoulos VR, Phillips DM (1998) Carrageenan-based nonoxynol-9 spermicides for prevention of sexually transmitted infections. Sex Transm Dis 25:494–500

    Article  CAS  PubMed  Google Scholar 

  93. Buck CB, Thompson CD, Roberts JN, Müller M, Lowy DR, Schiller JT (2006) Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2(7):e69. https://doi.org/10.1371/journal.ppat.0020069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Grassauer A, Weinmuellner R, Meier C, Pretsch A, Prieschl-Grassauer E, Unger H (2008) Iota-Carrageenan is a potent inhibitor of rhinovirus infection. Virol J 5:107. https://doi.org/10.1186/1743-422X-5-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Leibbrandt A, Meier C, König-Schuster M, Weinmüllner R, Kalthoff D, Pflugfelder B et al (2010) Iota-Carrageenan is a potent inhibitor of influenza a virus infection. PLoS One 5(12):e14320. https://doi.org/10.1371/journal.pone.0014320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chiu YH, Chan YL, Tsai LW, Li TL, Wu CJ (2012) Prevention of human enterovirus 71 infection by kappa carrageenan. Antivir Res 95(2):128–134

    Article  CAS  PubMed  Google Scholar 

  97. Eccles R, Martensson K, Chen SC (2010) Effects of intranasal xylometazoline, alone or in combination with ipratropium, in patients with common cold. Curr Med Res Opin 26(4):889–899

    Article  CAS  PubMed  Google Scholar 

  98. Fazekas T, Eickhoff P, Pruckner N, Vollnhofer G, Fischmeister G, Diakos C et al (2012) Lessons learned from a double-blind randomised placebo-controlled study with a iota-carrageenan nasal spray as medical device in children with acute symptoms of common cold. BMC Complement Altern Med 12:147. https://doi.org/10.1186/1472-6882-12-147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ludwig M, Enzenhofer E, Schneider S, Rauch M, Bodenteich A, Neumann K et al (2013) Efficacy of a carrageenan nasal spray in patients with common cold: a randomized controlled trial. Respir Res 14(1):124. https://doi.org/10.1186/1465-9921-14-124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Koenighofer M, Lion T, Bodenteich A, Prieschl-Grassauer E, Grassauer A, Unger H et al (2014) Carrageenan nasal spray in virus confirmed common cold: individual patient data analysis of two randomized controlled trials. Multidiscip Respir Med 9(1):57. https://doi.org/10.1186/2049-6958-9-57

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kwon PS, Oh H, Kwon SJ, Jin W, Zhang F, Fraser K et al (2020) Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro 6:50. https://doi.org/10.1038/s41421-020-00192-8

  102. Marinomed Biotech AG (2020) Study to investigate if sucking a Coldamaris Lozenge Elutes Sufficient Iota-carrageenan to inactivate usual common cold viruses. https://clinicaltrials.gov/ct2/show/NCT04533906. Accessed 31 Oct 2020

  103. Rennie P, Bowtell P, Hull D, Charbonneau D, Lambkin-Williams R, J l O (2007) Low pH gel intranasal sprays inactivate influenza viruses in vitro and protect ferrets against influenza infection. Respir Res 8(1):38. https://doi.org/10.1186/1465-9921-8-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gern JE, Mosser AG, Swenson CA, Rennie PJ, England RJ, Shaffer J, Mizoguchi H (2007) Inhibition of rhinovirus replication in vitro and in vivo by acid-buffered saline. J Infect Dis 195(8):1137–1143

    Article  CAS  PubMed  Google Scholar 

  105. Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen HL, Chan MCW et al (2020) Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 1(1):e10. https://doi.org/10.1016/S2666-5247(20)30003-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ramalingam S, Cai B, Wong J, Twomey M, Chen R, Fu RM et al (2018) Antiviral innate immune response in non-myeloid cells is augmented by chloride ions via an increase in intracellular hypochlorous acid levels. Sci Rep 8(1):13630. https://doi.org/10.1038/s41598-018-31936-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ramalingam S, Graham C, Dove J, Morrice L, Sheikh A (2019) A pilot, open labelled, randomised controlled trial of hypertonic saline nasal irrigation and gargling for the common cold. Sci Rep 9(1):1015. https://doi.org/10.1038/s41598-018-37703-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. University of Edinburgh (2020) Hypertonic Saline Nasal Irrigation and Gargling for Suspected or Confirmed COVID-19: Pragmatic Web-based Bayesian Adaptive Randomised Controlled Trial (ELVIS COVID-19). https://clinicaltrials.gov/ct2/show/NCT04382131. Accessed 31 Oct 2020

  109. Kimura KS, Freeman MH, Wessinger BC, Gupta V, Sheng Q, Huang LC et al Interim analysis of an open-label randomized controlled trial evaluating nasal irrigations in non-hospitalized patients with coronavirus disease 2019. Int Forum Allergy Rhinol. Sep 11. https://doi.org/10.1002/alr.22703. Online ahead of print

  110. King Faisal Specialist Hospital & Research Center (2020) HYPERTONIC SALINE COATED FACE MASK FOR REDUCING RESPIRATORY SYMPTOM SEVERITY IN PATIENTS WITH COVID-19. https://clinicaltrials.gov/ct2/show/NCT04465604. Accessed 31 Oct 2020

  111. Farrell NF, Klatt-Cromwell C, Schneider JS (2020) Benefits and safety of nasal saline irrigations in a pandemic—washing COVID-19 away. JAMA Otolaryngol Head Neck Surg 146(9):787–788

    Article  PubMed  Google Scholar 

  112. Kanjanawasee D, Seresirikachorn K, Chitsuthipakorn W, Snidvongs K (2018) Hypertonic saline versus isotonic saline nasal irrigation: systematic review and meta-analysis. Am J Rhinol Allergy 32(4):269–279

    Article  PubMed  Google Scholar 

  113. Koelsch S, Tschaikin M, Sacher F (2007) Anti-rhinovirus-specific activity of the alpha-sympathomimetic oxymetazoline. Arzneimittelforschung 57(7):475–482

    CAS  PubMed  Google Scholar 

  114. Winther B, Buchert D, Turner RB, Hendley JO, Tschaikin M (2010) Decreased rhinovirus shedding after intranasal oxymetazoline application in adults with induced colds compared with intranasal saline. Am J Rhinol Allergy 24(5):374–377

    Article  PubMed  Google Scholar 

  115. Dargahi N, Johnson J, Donkor O, Vasiljevic T, Apostolopoulos V (2019) Immunomodulatory effects of probiotics: can they be used to treat allergies and autoimmune diseases? Maturitas 119:25–38

    Article  CAS  PubMed  Google Scholar 

  116. Kassaa IA (2017) New insights on antiviral probiotics: from research to applications. Springer, New York. ISBN-13: 978-3319496870

    Google Scholar 

  117. Chiba E, Tomosada Y, Vizoso-Pinto MG, Salva S, Takahashi T, Tsukida K et al (2013) Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection. Int Immunopharmacol 17(2):373–382

    Article  CAS  PubMed  Google Scholar 

  118. Eguchi K, Fujitani N, Nakagawa H, Miyazaki T (2019) Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Sci Rep 9(1):4812. https://doi.org/10.1038/s41598-019-39602-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Goto H, Sagitani A, Ashida N, Kato S, Hirota T, Shinoda T et al (2013) Anti-influenza virus effects of both live and non-live Lactobacillus acidophilus L-92 accompanied by the activation of innate immunity. Br J Nutr 110(10):1810–1818

    Article  CAS  PubMed  Google Scholar 

  120. Kawase M, He F, Kubota A, Harata G, Hiramatsu M (2010) Oral administration of lactobacilli from human intestinal tract protects mice against influenza virus infection. Lett Appl Microbiol 51(1):6–10

    CAS  PubMed  Google Scholar 

  121. Zhang H, Yeh C, Jin Z, Ding L, Liu BY, Zhang L et al (2018) Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate. Synth Syst Biotechnol 3(2):113–120

    Article  PubMed  PubMed Central  Google Scholar 

  122. Olaimat AN, Aolymat I, Al-Holy M, Ayyash M, Abu Ghoush M, Al-Nabulsi AA et al (2020) The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19. NPJ Sci Food 4:17. https://doi.org/10.1038/s41538-020-00078-9

    Article  PubMed  PubMed Central  Google Scholar 

  123. Harata G, He F, Hiruta N, Kawase M, Kubota A, Hiramatsu M et al (2010) Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Lett Appl Microbiol 50(6):597–602

    Article  CAS  PubMed  Google Scholar 

  124. Tomosada Y, Chiba E, Zelaya H, Takahashi T, Tsukida K, Kitazawa H et al (2013) Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection. BMC Immunol 14:40. https://doi.org/10.1186/1471-2172-14-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zelaya H, Tada A, Vizoso-Pinto MG, Salva S, Kanmani P, Agüero G et al (2015) Nasal priming with immunobiotic Lactobacillus rhamnosus modulates inflammation-coagulation interactions and reduces influenza virus-associated pulmonary damage. Inflamm Res 64(8):589–602

    Article  CAS  PubMed  Google Scholar 

  126. Youn HN, Lee DH, Lee YN, Park JK, Yuk SS, Yang SY et al (2012) Intranasal administration of live Lactobacillus species facilitates protection against influenza virus infection in mice. Antivir Res 93(1):138–143

    Article  CAS  PubMed  Google Scholar 

  127. Mak JWY, Chan FKL, Ng SC (2020) Probiotics and COVID-19: one size does not fit all. Lancet Gastroenterol Hepatol 5(7):644–645

    Article  PubMed  PubMed Central  Google Scholar 

  128. Centre hospitalier de l’Université de Montréal (CHUM) (2020) Randomised single blinded clinical study of efficacy of intranasal probiotic treatment to reduce severity of symptoms in COVID19 infection. https://clinicaltrials.gov/ct2/show/NCT04458519. Accessed 31 Oct 2020

  129. Bioithas SL (2020) The intestinal microbiota as a therapeutic target in hospitalized patients With COVID-19 infection. https://clinicaltrials.gov/ct2/show/NCT04390477. Accessed 31 Oct 2020

  130. Biosearch SA (2020) Multicentric study to assess the effect of consumption of lactobacillus coryniformis K8 on healthcare personnel exposed to COVID-19. https://clinicaltrials.gov/ct2/show/NCT04366180. Accessed 31 Oct 2020

  131. Figuero E, Herrera D, Tobías A, Serrano J, Roldán S, Escribano M et al (2019) Efficacy of adjunctive anti-plaque chemical agents in managing gingivitis: a systematic review and network meta-analyses. J Clin Periodontol 46(7):723–739

    CAS  PubMed  Google Scholar 

  132. Bernstein D, Schiff G, Echler G, Prince A, Feller M, Briner W (1990) In vitro virucidal effectiveness of a 0.12%-chlorhexidine gluconate mouthrinse. J Dent Res 69(3):874–876

    Article  CAS  PubMed  Google Scholar 

  133. An N, Yue L, Zhao B (2020) Droplets and aerosols in dental clinics and prevention and control measures of infection. Zhonghua Kou Qiang Yi Xue Za Zhi 55(4):223–228

    CAS  PubMed  Google Scholar 

  134. Su J (2020) Aerosol transmission risk and comprehensive prevention and control strategy in dental treatments. Zhonghua Kou Qiang Yi Xue Za Zhi 55(4):229–234

    CAS  PubMed  Google Scholar 

  135. Yoon JG, Yoon J, Song JY, Yoon SY, Lim CS, Seong H et al (2020) Clinical significance of a high SARS-CoV-2 viral load in the saliva. J Korean Med Sci 35(20):e195. https://doi.org/10.3346/jkms.2020.35.e195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dentaid SL (2020) Efecto de un Enjuague Bucal Con Clorhexidina al 0.12% y Cloruro de Cetil Piridinio al 0.05% en la Carga Viral en Saliva en Pacientes COVID-19 + Hospitalizados o Que Esten Recibiendo Cuidado médico en Casa en Cali - 2020. https://clinicaltrials.gov/ct2/show/NCT04563689. Accessed 31 Oct 2020

  137. Samanta A, Das G, Das S (2011) Roles of flavonoids in Plants. Int J Pharm Sci Technol 6:12–35. ISSN: 0975-0525

    Google Scholar 

  138. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47. https://doi.org/10.1017/jns.2016.41. eCollection 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Korkina LG, Afanas’ev IB (1997) Antioxidant and chelating properties of flavonoids. Adv Pharmacol 38:151–163

    Article  CAS  PubMed  Google Scholar 

  140. Shimizu JF, Lima CS, Pereira CM, Bittar C, Batista MN, Nazaré AC et al (2017) Flavonoids from pterogyne nitens inhibit hepatitis C virus entry. Sci Rep 7(1):16127. https://doi.org/10.1038/s41598-017-16336-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ryu YB, Jeong HJ, Kim JH, Kim YM, Park JY, Kim D et al (2010) Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem 18(22):7940–7947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jo S, Kim H, Kim S, Shin DH, Kim MS (2019) Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem Biol Drug Des 94(6):2023–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jeong HJ, Ryu YB, Park SJ, Kim JH, Kwon HJ, Kim JH et al (2009) Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg Med Chem 17(19):6816–6823

    Article  CAS  PubMed  Google Scholar 

  144. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G et al (2004) Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 78(20):11334–11339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yan H, Ma L, Wang H, Wu S, Huang H, Gu Z et al (2019) Luteolin decreases the yield of influenza a virus in vitro by interfering with the coat protein I complex expression. J Nat Med 73(3):487–496

    Article  CAS  PubMed  Google Scholar 

  146. Lalani S, Poh CL (2020) Flavonoids as antiviral agents for Enterovirus A71 (EV-A71). Viruses 12(2):184. https://doi.org/10.3390/v12020184

    Article  CAS  PubMed Central  Google Scholar 

  147. Carrouel F, Gonçalves LS, Conte MP, Campus G, Fisher J, Fraticelli L, et al (2020) Antiviral activity of reagents in mouth Rinses against SARS-CoV-2. J Dent Res. Oct 22:22034520967933. https://doi.org/10.1177/0022034520967933. Online ahead of print

  148. Carrouel F, Conte MP, Fisher J, Gonçalves LS, Dussart C, Llodra JC et al (2020) COVID-19: a recommendation to examine the effect of mouthrinses with β-cyclodextrin combined with citrox in preventing infection and progression. J Clin Med 9(4):1126. https://doi.org/10.3390/jcm9041126

    Article  CAS  PubMed Central  Google Scholar 

  149. Jambhekar SS, Breen P (2016) Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov Today 21(2):356–362

    Article  CAS  PubMed  Google Scholar 

  150. Saokham P, Muankaew C, Jansook P, Loftsson T (2018) Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 3(5):1161. https://doi.org/10.3390/molecules23051161

    Article  CAS  Google Scholar 

  151. Pan Y, Xue Y, Snow J, Xiao H (2014) Tailor-made antimicrobial/antiviral star polymer via ATRP of cyclodextrin and guanidine-based macromonomer. Macromol Chem Phys 216(5):511–518

    Article  CAS  Google Scholar 

  152. Choi KS, Aizaki H, Lai MMC (2005) Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release. J Virol 79(15):9862–9871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lorizate M, Kräusslich HG (2011) Role of lipids in virus replication. Cold Spring Harb Perspect Biol 3(10):a004820. https://doi.org/10.1101/cshperspect.a004820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lu Y, Liu DX, Tam JP (2008) Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochem Biophys Res Commun 369(2):344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453(1):167–180

    Article  CAS  PubMed  Google Scholar 

  156. Glende JH, Pfefferle S, Drosten C, Schwegmann-Weßels C, Herrler G (2008) Lipid microdomains are important for the entry process of SARS coronavirus to target cells. FASEB J 22(S2):282–282

    Article  Google Scholar 

  157. Baglivo M, Baronio M, Natalini G, Beccari T, Chiurazzi P, Fulcheri E et al (2020) Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? SARS-COV-2 lipid-dependent attachment to host cells. Acta Bio Med Atenei Parmensis 91(1):161–164

    Google Scholar 

  158. Claude Bernard University (2020) COVID-19: Nasal and salivary detection of the SARS-CoV-2 virus after antiviral mouth rinses (BBCovid). https://clinicaltrials.gov/ct2/show/NCT04352959. Accessed 31 Oct 2020

  159. Herrera D, Serrano J, Roldán S, Sanz M (2020) Is the oral cavity relevant in SARS-CoV-2 pandemic? Clin Oral Investig 24(8):2925–2930

    Article  PubMed  PubMed Central  Google Scholar 

  160. Fromm-Dornieden C, Rembe J-D, Schäfer N, Böhm J, Stuermer EK (2015) Cetylpyridinium chloride and miramistin as antiseptic substances in chronic wound management - prospects and limitations. J Med Microbiol 64(Pt 4):407–414

    Article  CAS  PubMed  Google Scholar 

  161. Baker N, Williams AJ, Tropsha A, Ekins S (2020) Repurposing quaternary ammonium compounds as potential treatments for COVID-19. Pharm Res 37(6):104. https://doi.org/10.1007/s11095-020-02842-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mukherjee PK, Esper F, Buchheit K, Arters K, Adkins I, Ghannoum MA et al (2017) Randomized, double-blind, placebo-controlled clinical trial to assess the safety and effectiveness of a novel dual-action oral topical formulation against upper respiratory infections. BMC Infect Dis 17(1):74. https://doi.org/10.1186/s12879-016-2177-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Griffin AS, Cabot P, Wallwork B, Panizza B (2018) Alternative therapies for chronic rhinosinusitis: a review. Ear Nose Throat J 97(3):E25–E33

    PubMed  Google Scholar 

  164. Isaacs S, Fakhri S, Luong A, Whited C, Citardi MJ (2011) The effect of dilute baby shampoo on nasal mucociliary clearance in healthy subjects. Am J Rhinol Allergy 25(1):e27–e29. https://doi.org/10.2500/ajra.2011.25.3583

    Article  PubMed  Google Scholar 

  165. Farag AA, Deal AM, McKinney KA, Thorp BD, Senior BA, Ebert CS Jr et al (2013) Single-blind randomized controlled trial of surfactant vs hypertonic saline irrigation following endoscopic endonasal surgery. Int Forum Allergy Rhinol 3(4):276–280

    Article  PubMed  Google Scholar 

  166. Rosen PL, Palmer JN, O’Malley BW, Cohen NA (2013) Surfactants in the management of rhinopathologies. Am J Rhinol Allergy 27(3):177–180

    Article  PubMed  PubMed Central  Google Scholar 

  167. Voelker DR, Numata M (2019) Phospholipid regulation of innate immunity and respiratory viral infection. J Biol Chem 294(12):4282–4289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Numata M, Mitchell JR, Tipper JL, Brand JD, Trombley JE, Nagashima Y et al (2020) Pulmonary surfactant lipids inhibit infections with the pandemic H1N1 influenza virus in several animal models. J Biol Chem 295(6):1704–1715

    Article  CAS  PubMed  Google Scholar 

  169. Numata M, Chu HW, Dakhama A, Voelker DR (2010) Pulmonary surfactant phosphatidylglycerol inhibits respiratory syncytial virus–induced inflammation and infection. Proc Natl Acad Sci USA 107(1):320–325

    Article  CAS  PubMed  Google Scholar 

  170. Meyers C, Robison R, Milici J, Alam S, Quillen D, Goldenberg D et al (2020) Lowering the transmission and spread of human coronavirus. J Med Virol. Sep 17. https://doi.org/10.1002/jmv.26514. Online ahead of print

  171. Kimura K (2020) Impact of nasal saline irrigations on viral load in patients with COVID-19. https://clinicaltrials.gov/ct2/show/NCT04347538. Accessed 31 Oct 2020

  172. Turner JH, Wu J, Dorminy CA, Chandra RK (2017) Safety and tolerability of surfactant nasal irrigation. Int Forum Allergy Rhinol 7(8):809–812

    Article  PubMed  Google Scholar 

  173. Pestka S, Langer JA, Zoon KC, Samuel CE (1987) Interferons and their actions. Annu Rev Biochem 56:727–777

    Article  CAS  PubMed  Google Scholar 

  174. De Andrea M, Ravera R, Gioia D, Gariglio M, Landolfo S (2002) The interferon system: an overview. Eur J Paediatr Neurol 6 Suppl A:A41–46; discussion A55–58

    Google Scholar 

  175. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B et al (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436(7047):112–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med 11(8):875–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al (2020) SARS-CoV-2 receptor ACE2 Is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181(6):1016–1035.e19

    Google Scholar 

  178. Higgins TS, Wu AW, Illing EA, Sokoloski KJ, Weaver BA, Anthony BP et al (2020) Intranasal antiviral drug delivery and coronavirus disease 2019 (COVID-19): a state of the art review. Otolaryngol Head Neck Surg 163(4):682–694

    Article  PubMed  Google Scholar 

  179. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW (2003) Treatment of SARS with human interferons. Lancet 362(9380):293–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sun Y, Jiang J, Tien P, Liu W, Li J (2018) IFN-λ: a new spotlight in innate immunity against influenza virus infection. Protein Cell 9(10):832–837

    Article  PubMed  PubMed Central  Google Scholar 

  181. Jiang R, Han B, Song M, Xue B, Zhang Y, Ding Y et al (2020) Efficacy and safety of aerosol inhalation of recombinant human interferon α1b (IFNα1b) injection for noninfluenza viral pneumonia, a multicenter, randomized, double-blind, placebo-controlled trial. J Inflamm (Lond) 17:19. https://doi.org/10.1186/s12950-020-00249-1

    Article  CAS  Google Scholar 

  182. Djukanović R, Harrison T, Johnston SL, Gabbay F, Wark P, Thomson NC et al (2014) The effect of inhaled IFN-β on worsening of asthma symptoms caused by viral infections. A randomized trial. Am J Respir Crit Care Med 190(2):145–154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Hao SR, Yan R, Zhang SY, Lian JS, Cai H, Zhang XL et al (2020) Interferon-alpha2b spray inhalation did not shorten virus shedding time of SARS-CoV-2 in hospitalized patients: a preliminary matched case-control study. J Zhejiang Univ Sci B 21(8):628–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Meng Z, Wang T, Li C, Chen X, Li L, Qin X et al (2020) An experimental trial of recombinant human interferon alpha nasal drops to prevent coronavirus disease 2019 in medical staff in an epidemic area. medRxiv. https://doi.org/10.1101/2020.04.11.20061473

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Higgins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hsue, V.B. et al. (2021). Topical Oral and Intranasal Antiviral Agents for Coronavirus Disease 2019 (COVID-19). In: Guest, P.C. (eds) Identification of Biomarkers, New Treatments, and Vaccines for COVID-19. Advances in Experimental Medicine and Biology(), vol 1327. Springer, Cham. https://doi.org/10.1007/978-3-030-71697-4_14

Download citation

Publish with us

Policies and ethics