Skip to main content

Balanced and Compressed Coordinate Layout for the Sparse Matrix-Vector Product on GPUs

  • Conference paper
  • First Online:
Euro-Par 2020: Parallel Processing Workshops (Euro-Par 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12480))

Included in the following conference series:

Abstract

We contribute to the optimization of the sparse matrix-vector product on graphics processing units by introducing a variant of the coordinate sparse matrix layout that compresses the integer representation of the matrix indices. In addition, we employ a look-ahead table to avoid the storage of repeated numerical values in the sparse matrix, yielding a more compact data representation that is easier to maintain in the cache. Our evaluation on the two most recent generations of NVIDIA GPUs, the V100 and the A100 architectures, shows considerable performance improvements over the kernels for the sparse matrix-vector product in cuSPARSE (CUDA 11.0.167).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suitesparse matrix collection (2018). https://sparse.tamu.edu. Accessed Sept 2020

  2. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Technical report NVR-2008-004, NVIDIA Corporation, December 2008

    Google Scholar 

  3. Buluç, A., Williams, S., Oliker, L., Demmel, J.: Reduced-bandwidth multithreaded algorithms for sparse matrix-vector multiplication. In: Proceedings of the IEEE International Parallel & Distributed Processing Symposium, pp. 721–733 (2011)

    Google Scholar 

  4. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-vector multiply on GPUs. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2010, pp. 115–126 (2010)

    Google Scholar 

  5. Filippone, S., Cardellini, V., Barbieri, D., Fanfarillo, A.: Sparse matrix-vector multiplication on GPGPUs. ACM Trans. Math. Softw. 43(4), 1–49 (2017)

    Article  MathSciNet  Google Scholar 

  6. Flegar, G., Anzt, H.: Overcoming load imbalance for irregular sparse matrices. In: Proceedings of the Seventh Workshop on Irregular Applications: Architectures and Algorithms, IA3 2017 (2017)

    Google Scholar 

  7. Flegar, G., Quintana-Ortí, E.S.: Balanced CSR sparse matrix-vector product on graphics processors. In: Rivera, F.F., Pena, T.F., Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 697–709. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64203-1_50

    Chapter  Google Scholar 

  8. Grossman, M., Thiele, C., Araya-Polo, M., Frank, F., Alpak, F.O., Sarkar, V.: A survey of sparse matrix-vector multiplication performance on large matrices. CoRR abs/1608.00636 (2016). http://arxiv.org/abs/1608.00636

  9. Liu, W., Vinter, B.: CSR5: an efficient storage format for cross-platform sparse matrix-vector multiplication. In: Proceedings of the 29th ACM on International Conference on Supercomputing, ICS 2015, pp. 339–350. ACM, New York (2015)

    Google Scholar 

  10. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  Google Scholar 

Download references

Acknowledgements

This work was partially sponsored by the EU H2020 project 732631 OPRECOMP and project TIN2017-82972-R of the Spanish MINECO. Hartwig Anzt and Yuhsiang M. Tsai were supported by the “Impuls und Vernetzungsfond” of the Helmholtz Association under grant VH-NG-1241 and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. The authors would like to thank the Steinbuch Centre for Computing (SCC) of the Karlsruhe Institute of Technology for providing access to an NVIDIA A100 GPU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique S. Quintana-Ortí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aliaga, J.I., Anzt, H., Quintana-Ortí, E.S., Tomás, A.E., Tsai, Y.M. (2021). Balanced and Compressed Coordinate Layout for the Sparse Matrix-Vector Product on GPUs. In: Balis, B., et al. Euro-Par 2020: Parallel Processing Workshops. Euro-Par 2020. Lecture Notes in Computer Science(), vol 12480. Springer, Cham. https://doi.org/10.1007/978-3-030-71593-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71593-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71592-2

  • Online ISBN: 978-3-030-71593-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics