Skip to main content

Neurotrophic Therapy for ALS/MND

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Neurotrophic factors have a large range of activities in the nervous system that consist of functions in development, plasticity, neurogenesis, disease, and injury. In the context of amyotrophic lateral sclerosis (ALS), it has long been hypothesized that lack of neurotrophic growth factors is one of the neurotoxic contributors to the disease that results in death of motor neurons. This has led to a considerable number of clinical trials undertaken involving neurotrophic therapy for ALS, although none have shown benefit. This chapter will review the cause and pathology of ALS and how neurotrophic factors relate to neurotoxicity in this disease. The treatments targeted at neurotoxicity and results of trials will be discussed, in particular neurotrophic factors. This will include glial cell-derived neurotrophic factor (GDNF), brain-derived growth factor (BDNF), neurotrophin-3 (NT-3), ciliary neurotrophic factor (CNTF), insulin-like growth factor (IGF), vascular endothelial cell growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). Also highlighted is the potential for reexamining neurotrophic factors as treatments for ALS, including new delivery methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ALS:

Amyotrophic lateral sclerosis

BBB:

Blood–brain barrier

BDNF:

Brain-derived growth factor

C9ORF72:

Chromosome 9 open reading frame 72

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

FGF:

Fibroblast growth factor

GDNF:

Glial cell-derived neurotrophic factor

HGF:

Hepatocyte growth factor

IGF:

Insulin-like growth factor

NGF:

Nerve growth factor

NMJ:

Neuromuscular junction

NT-3:

Neurotrophin-3

NT-4:

Neurotrophin-4

NT-5:

Neurotrophin-5

SOD1:

Superoxide dismutase 1

SOD1G93A:

Mutated SOD1 glycine to alanine position 93

TDP-43:

Transactivation response DNA-binding protein of 43 kDa

TUDCA:

Tauroursodeoxycholic acid

VEGF:

Vascular endothelial cell growth factor

References

  • A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF study group (phase III). (1999). Neurology, 52(7), 1427–1433.

    Google Scholar 

  • A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. ALS CNTF Treatment Study Group. (1996). Neurology, 46(5), 1244–1249.

    Google Scholar 

  • Ackerley, S., Grierson, A. J., Banner, S., Perkinton, M. S., Brownlees, J., Byers, H. L., … Miller, C. C. J. (2004). p38alpha stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis. Molecular and Cellular Neurosciences, 26(2), 354–364. https://doi.org/10.1016/j.mcn.2004.02.009

    Article  CAS  PubMed  Google Scholar 

  • Acsadi, G., Anguelov, R. A., Yang, H., Toth, G., Thomas, R., Jani, A., … Lewis, R. A. (2002). Increased survival and function of SOD1 mice after glial cell-derived neurotrophic factor gene therapy. Human Gene Therapy, 13(9), 1047–1059.

    CAS  PubMed  Google Scholar 

  • Afroz, T., Perez-Berlanga, M., & Polymenidou, M. (2019). Structural transition, function and dysfunction of TDP-43 in neurodegenerative diseases. Chimia International Journal for Chemistry, 73(5), 380–390.

    CAS  Google Scholar 

  • Al-Chalabi, A., Jones, A., Troakes, C., King, A., Al-Sarraj, S., & Van Den Berg, L. H. (2012). The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathologica, 124(3), 339–352. https://doi.org/10.1007/s00401-012-1022-4

    Article  CAS  PubMed  Google Scholar 

  • Alvarez, J. A., Baird, A., Tatum, A., Daucher, J., Chorsky, R., Gonzalez, A. M., & Stopa, E. G. (1992). Localization of basic fibroblast growth factor and vascular endothelial growth factor in human glial neoplasms. Modern Pathology, 5(3), 303–307.

    CAS  PubMed  Google Scholar 

  • Andersen, P. M., & Al-Chalabi, A. (2011). Clinical genetics of amyotrophic lateral sclerosis: What do we really know? Nature Reviews Neurology, 7(11), 603–615. https://doi.org/10.1038/nrneurol.2011.150

    Article  CAS  PubMed  Google Scholar 

  • Apel, P. J., Ma, J., Callahan, M., Northam, C. N., Alton, T. B., Sonntag, W. E., & Li, Z. (2010). Effect of locally delivered IGF-1 on nerve regeneration during aging: An experimental study in rats. Muscle & Nerve, 41(3), 335–341. https://doi.org/10.1002/mus.21485

    Article  CAS  Google Scholar 

  • Arakawa, Y., Sendtner, M., & Thoenen, H. (1990). Survival effect of ciliary neurotrophic factor (CNTF) on chick embryonic motoneurons in culture: Comparison with other neurotrophic factors and cytokines. The Journal of Neuroscience, 10(11), 3507–3515.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araki, E., Tsuboi, Y., Daechsel, J., Milnerwood, A., Vilarino-Guell, C., Fujii, N., … Fukae, J. (2014). A novel DCTN1 mutation with late-onset parkinsonism and frontotemporal atrophy. Movement Disorders, 29(9), 1201–1204.

    CAS  PubMed  Google Scholar 

  • Aronica, E., Baas, F., Iyer, A., ten Asbroek, A. L., Morello, G., & Cavallaro, S. (2015). Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex. Neurobiology of Disease, 74, 359–376.

    CAS  PubMed  Google Scholar 

  • Babu, S., Macklin, E. A., Jackson, K. E., Simpson, E., Mahoney, K., Yu, H., … Atassi, N. (2020). Selection design phase II trial of high dosages of tamoxifen and creatine in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 21(1–2), 15–23. https://doi.org/10.1080/21678421.2019.1672750

    Article  CAS  PubMed  Google Scholar 

  • Barati, S., Hurtado, P. R., Zhang, S. H., Tinsley, R., Ferguson, I. A., & Rush, R. A. (2006). GDNF gene delivery via the p75(NTR) receptor rescues injured motor neurons. Experimental Neurology, 202(1), 179–188.

    CAS  PubMed  Google Scholar 

  • Barbin, G., Manthorpe, M., & Varon, S. (1984). Purification of the chick eye ciliary neuronotrophic factor. Journal of Neurochemistry, 43(5), 1468–1478.

    CAS  PubMed  Google Scholar 

  • Barde, Y. A., Edgar, D., & Thoenen, H. (1982). Purification of a new neurotrophic factor from mammalian brain. The EMBO Journal, 1(5), 549–553.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barmada, S. J., Skibinski, G., Korb, E., Rao, E. J., Wu, J. Y., & Finkbeiner, S. (2010). Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. Journal of Neuroscience, 30(2), 639–649.

    CAS  PubMed  Google Scholar 

  • Beck, M., Flachenecker, P., Magnus, T., Giess, R., Reiners, K., Toyka, K. V., & Naumann, M. (2005). Autonomic dysfunction in ALS: A preliminary study on the effects of intrathecal BDNF. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 6(2), 100–103. X73149787626QLG8 [pii].. https://doi.org/10.1080/14660820510028412

    Article  CAS  PubMed  Google Scholar 

  • Bemelmans, A.-P., Husson, I., Jaquet, M., Mallet, J., Kosofsky, B. E., & Gressens, P. (2006). Lentiviral-mediated gene transfer of brain-derived neurotrophic factor is neuroprotective in a mouse model of neonatal excitotoxic challenge. Journal of Neuroscience Research, 83(1), 50–60. https://doi.org/10.1002/jnr.20704

    Article  CAS  PubMed  Google Scholar 

  • Bensimon, G., Lacomblez, L., & Meininger, V. (1994). A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. The New England Journal of Medicine, 330(9), 585–591. https://doi.org/10.1056/NEJM199403033300901

    Article  CAS  PubMed  Google Scholar 

  • Berry, J. D., Cudkowicz, M. E., Windebank, A. J., Staff, N. P., Owegi, M., Nicholson, K., … Brown, R. H. (2019). NurOwn, phase 2, randomized, clinical trial in patients with ALS: Safety, clinical, and biomarker results. Neurology, 93(24), e2294–e2305. https://doi.org/10.1212/wnl.0000000000008620.

  • Bilak, M. M., Corse, A. M., & Kuncl, R. W. (2001). Additivity and potentiation of IGF-I and GDNF in the complete rescue of postnatal motor neurons. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2(2), 83–91.

    CAS  PubMed  Google Scholar 

  • Bilsland, L. G., Sahai, E., Kelly, G., Golding, M., Greensmith, L., & Schiavo, G. (2010). Deficits in axonal transport precede ALS symptoms in vivo. Proc Natl Acad Sci USA, 107(47), 20523–20528. https://doi.org/10.1073/pnas.1006869107

    Article  PubMed  PubMed Central  Google Scholar 

  • Boillée, S., Velde, C. V., & Cleveland, D. W. (2006). ALS: A disease of motor neurons and their nonneuronal neighbors. Neuron, 52(1), 39–59.

    PubMed  Google Scholar 

  • Borasio, G. D., Robberecht, W., Leigh, P. N., Emile, J., Guiloff, R. J., Jerusalem, F., … Dobbins, T. (1998). A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. European ALS/IGF-I Study Group. Neurology, 51(2), 583–586.

    CAS  PubMed  Google Scholar 

  • Bosco, D. A., Morfini, G., Karabacak, N. M., Song, Y., Gros-Louis, F., Pasinelli, P., … Brown, R. H. (2010). Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nature Neuroscience, 13(11), 1396–1403. https://doi.org/10.1038/nn.2660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boussicault, L., Laffaire, J., Schmitt, P., Rinaudo, P., Callizot, N., Nabirotchkin, S., … Cohen, D. (2020). Combination of acamprosate and baclofen (PXT864) as a potential new therapy for amyotrophic lateral sclerosis. Journal of Neuroscience Research, 98(12), 2435–2450.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bozik, M. E., Mather, J. L., Kramer, W. G., Gribkoff, V. K., & Ingersoll, E. W. (2010). Safety, tolerability, and pharmacokinetics of KNS-760704 (Dexpramipexole) in healthy adult subjects. Journal of Clinical Pharmacology. https://doi.org/10.1177/0091270010379412

  • Brettschneider, J., Petzold, A., Süssmuth, S. D., Ludolph, A. C., & Tumani, H. (2006). Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology, 66(6), 852–856. https://doi.org/10.1212/01.wnl.0000203120.85850.54

    Article  CAS  PubMed  Google Scholar 

  • Brown, R. H., & Al-Chalabi, A. (2017). Amyotrophic lateral sclerosis. New England Journal of Medicine, 377(2), 162–172.

    CAS  Google Scholar 

  • Calvo, A. C., Moreno-Igoa, M., Mancuso, R., Manzano, R., Oliván, S., Muñoz, M. J., … Osta, R. (2011). Lack of a synergistic effect of a non-viral ALS gene therapy based on BDNF and a TTC fusion molecule. Orphanet Journal of Rare Diseases, 6, 10. https://doi.org/10.1186/1750-1172-6-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannon, A., Yang, B., Knight, J., Farnham, I. M., Zhang, Y., Wuertzer, C. A., … Rousseau, L. (2012). Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction. Acta Neuropathologica, 123(6), 807–823.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caroni, P. (1993). Activity-sensitive signaling by muscle-derived insulin-like growth factors in the developing and regenerating neuromuscular system. Annals of the New York Academy of Sciences, 692, 209–222.

    CAS  PubMed  Google Scholar 

  • Cascella, R., Capitini, C., Fani, G., Dobson, C. M., Cecchi, C., & Chiti, F. (2016). Quantification of the relative contributions of loss-of-function and gain-of-function mechanisms in TAR DNA-binding protein 43 (TDP-43) proteinopathies. Journal of Biological Chemistry, 291(37), 19437–19448.

    CAS  Google Scholar 

  • Casella, G. T. B., Almeida, V. W., Grumbles, R. M., Liu, Y., & Thomas, C. K. (2010). Neurotrophic factors improve muscle reinnervation from embryonic neurons. Muscle & Nerve, 42(5), 788–797. https://doi.org/10.1002/mus.21757

    Article  Google Scholar 

  • Cassina, P., Pehar, M., Vargas, M. R., Castellanos, R., Barbeito, A. G., Estevez, A. G., … Barbeito, L. (2005). Astrocyte activation by fibroblast growth factor-1 and motor neuron apoptosis: Implications for amyotrophic lateral sclerosis. Journal of Neurochemistry, 93(1), 38–46. https://doi.org/10.1111/j.1471-4159.2004.02984.x

    Article  CAS  PubMed  Google Scholar 

  • Cheah, B. C., Lin, C. S. Y., Park, S. B., Vucic, S., Krishnan, A. V., & Kiernan, M. C. (2012). Progressive axonal dysfunction and clinical impairment in amyotrophic lateral sclerosis. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology. https://doi.org/10.1016/j.clinph.2012.06.020

  • Chen, W., Saeed, M., Mao, H., Siddique, N., Dellefave, L., Hung, W.-Y., … Siddique, T. (2006). Lack of association of VEGF promoter polymorphisms with sporadic ALS. Neurology, 67(3), 508–510. https://doi.org/10.1212/01.wnl.0000227926.42370.04

    Article  CAS  PubMed  Google Scholar 

  • Cohen, S. (1960). Purification of a nerve-growth promoting protein from the mouse salivary gland and its neuro-cytotoxic antiserum. Proceedings of the National Academy of Sciences of the United States of America, 46(3), 302–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, T. J., Lee, V. M.-Y., & Trojanowski, J. Q. (2011). TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends in Molecular Medicine, 17(11), 659–667. https://doi.org/10.1016/j.molmed.2011.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly, D. T., Heuvelman, D. M., Nelson, R., Olander, J. V., Eppley, B. L., Delfino, J. J., … Feder, J. (1989). Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. Journal of Clinical Investigation, 84(5), 1470–1478. https://doi.org/10.1172/JCI114322

    Article  CAS  PubMed Central  Google Scholar 

  • Cook, C., & Petrucelli, L. (2019). Genetic convergence brings clarity to the enigmatic red line in ALS. Neuron, 101(6), 1057–1069.

    CAS  PubMed  Google Scholar 

  • Corbo, M., Lunetta, C., Magni, P., Dozio, E., Ruscica, M., Adobbati, L., & Silani, V. (2010). Free insulin-like growth factor (IGF)-1 and IGF-binding proteins-2 and -3 in serum and cerebrospinal fluid of amyotrophic lateral sclerosis patients. European Journal of Neurology, 17(3), 398–404. https://doi.org/10.1111/j.1468-1331.2009.02815.x

    Article  CAS  PubMed  Google Scholar 

  • Cudkowicz, M., Bozik, M. E., Ingersoll, E. W., Miller, R., Mitsumoto, H., Shefner, J., … Gribkoff, V. K. (2011). The effects of dexpramipexole (KNS-760704) in individuals with amyotrophic lateral sclerosis. Nature Medicine, 17(12), 1652–1656. https://doi.org/10.1038/nm.2579

    Article  CAS  PubMed  Google Scholar 

  • Cudkowicz, M. E., van den Berg, L. H., Shefner, J. M., Mitsumoto, H., Mora, J. S., Ludolph, A., … Kerr, D. A. (2013). Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): A randomised, double-blind, phase 3 trial. Lancet Neurology, 12(11), 1059–1067. https://doi.org/10.1016/s1474-4422(13)70221-7

    Article  CAS  PubMed  Google Scholar 

  • Cuevas, P., Carceller, F., & Gimenez-Gallego, G. (1995). Acidic fibroblast growth factor prevents post-axotomy neuronal death of the newborn rat facial nerve. Neuroscience Letters, 197(3), 183–186. 030439409511926N [pii].

    CAS  PubMed  Google Scholar 

  • Dadon-Nachum, M., Ben-Yaacov, K., Ben-Zur, T., Barhum, Y., Yaffe, D., Perlson, E., & Offen, D. (2015). Transplanted modified muscle progenitor cells expressing a mixture of neurotrophic factors delay disease onset and enhance survival in the SOD1 mouse model of ALS. Journal of Molecular Neuroscience, 55(3), 788–797. https://doi.org/10.1007/s12031-014-0426-0

    Article  CAS  PubMed  Google Scholar 

  • Dadon-Nachum, M., Melamed, E., & Offen, D. (2010). The “Dying-Back” phenomenon of motor neurons in ALS. Journal of Molecular Neuroscience. https://doi.org/10.1007/s12031-010-9467-1

  • Danzeisen, R., Schwalenstoecker, B., Gillardon, F., Buerger, E., Krzykalla, V., Klinder, K., … Kussmaul, L. (2006). Targeted antioxidative and neuroprotective properties of the dopamine agonist pramipexole and its nondopaminergic enantiomer SND919CL2x [(+)2-amino-4,5,6,7-tetrahydro-6-Lpropylamino-benzathiazole dihydrochloride]. The Journal of Pharmacology and Experimental Therapeutics, 316(1), 189–199. https://doi.org/10.1124/jpet.105.092312

    Article  CAS  PubMed  Google Scholar 

  • De Giorgio, F., Maduro, C., Fisher, E. M. C., & Acevedo-Arozena, A. (2019). Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis. Disease Models & Mechanisms, 12(1). https://doi.org/10.1242/dmm.037424

  • De Schaepdryver, M., Jeromin, A., Gille, B., Claeys, K. G., Herbst, V., Brix, B., … Poesen, K. (2018). Comparison of elevated phosphorylated neurofilament heavy chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 89(4), 367–373.

    Google Scholar 

  • De Vos, K. J., Chapman, A. L., Tennant, M. E., Manser, C., Tudor, E. L., Lau, K. F., … Grierson, A. J. (2007). Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Human Molecular Genetics, 16(22), 2720–2728. ddm226 [pii]. https://doi.org/10.1093/hmg/ddm226

    Article  CAS  PubMed  Google Scholar 

  • De Vos, K. J., & Hafezparast, M. (2017). Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiology of Disease, 105, 283–299.

    PubMed  PubMed Central  Google Scholar 

  • Deshpande, D. M., Kim, Y. S., Martinez, T., Carmen, J., Dike, S., Shats, I., … Hoke, A. (2006). Recovery from paralysis in adult rats using embryonic stem cells. Annals of Neurology, 60(1), 32–44.

    CAS  PubMed  Google Scholar 

  • Devos, D., Moreau, C., Lassalle, P., Perez, T., De Seze, J., Brunaud-Danel, V., … Just, N. (2004). Low levels of the vascular endothelial growth factor in CSF from early ALS patients. Neurology, 62(11), 2127–2129.

    CAS  PubMed  Google Scholar 

  • Dewil, M., dela Cruz, V. F., Van Den Bosch, L., & Robberecht, W. (2007). Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1(G93A)-induced motor neuron death. Neurobiology of Disease, 26(2), 332–341. https://doi.org/10.1016/j.nbd.2006.12.023

    Article  CAS  PubMed  Google Scholar 

  • Dobrogowska, D. H., Lossinsky, A. S., Tarnawski, M., & Vorbrodt, A. W. (1998). Increased blood-brain barrier permeability and endothelial abnormalities induced by vascular endothelial growth factor. Journal of Neurocytology, 27(3), 163–173.

    CAS  PubMed  Google Scholar 

  • Dodge, J. C., Haidet, A. M., Yang, W., Passini, M. A., Hester, M., Clarke, J., … Kaspar, B. K. (2008). Delivery of AAV-IGF-1 to the CNS extends survival in ALS mice through modification of aberrant glial cell activity. Molecular Therapy, 16(6), 1056–1064. https://doi.org/10.1038/mt.2008.60

    Article  CAS  PubMed  Google Scholar 

  • Dong, Q. X., Zhu, J., Liu, S. Y., Yu, X. L., & Liu, R. T. (2018). An oligomer-specific antibody improved motor function and attenuated neuropathology in the SOD1-G93A transgenic mouse model of ALS. International Immunopharmacology, 65, 413–421. https://doi.org/10.1016/j.intimp.2018.10.032

    Article  CAS  PubMed  Google Scholar 

  • Ebens, A., Brose, K., Leonardo, E. D., Hanson, M. G., Bladt, F., Birchmeier, C., … Tessier-Lavigne, M. (1996). Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron, 17(6), 1157–1172.

    CAS  PubMed  Google Scholar 

  • Emoto, N., Gonzalez, A. M., Walicke, P. A., Wada, E., Simmons, D. M., Shimasaki, S., & Baird, A. (1989). Basic fibroblast growth factor (FGF) in the central nervous system: Identification of specific loci of basic FGF expression in the rat brain. Growth Factors, 2(1), 21–29.

    CAS  PubMed  Google Scholar 

  • Fernandez-Santiago, R., Sharma, M., Mueller, J. C., Gohlke, H., Illig, T., Anneser, J., … Gasser, T. (2006). Possible gender-dependent association of vascular endothelial growth factor (VEGF) gene and ALS. Neurology, 66(12), 1929–1931. https://doi.org/10.1212/01.wnl.0000219756.71928.25

    Article  CAS  PubMed  Google Scholar 

  • Fischer, L. R., Culver, D. G., Tennant, P., Davis, A. A., Wang, M., Castellano-Sanchez, A., … Glass, J. D. (2004). Amyotrophic lateral sclerosis is a distal axonopathy: Evidence in mice and man. Experimental Neurology, 185(2), 232–240.

    PubMed  Google Scholar 

  • Foster, L. A., & Salajegheh, M. K. (2018). Motor neuron disease: Pathophysiology, diagnosis, and management. The American Journal of Medicine.

    Google Scholar 

  • Franz, C. K., Federici, T., Yang, J., Backus, C., Oh, S. S., Teng, Q., … Boulis, N. M. (2009). Intraspinal cord delivery of IGF-I mediated by adeno-associated virus 2 is neuroprotective in a rat model of familial ALS. Neurobiology of Disease, 33(3), 473–481. https://doi.org/10.1016/j.nbd.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  • Gaidin, S., Turovskaya, M., Gavrish, M., Babaev, A., Mal’tseva, V., Blinova, E., & Turovsky, E. (2020). The selective BDNF overexpression in neurons protects neuroglial networks against OGD and glutamate-induced excitotoxicity. International Journal of Neuroscience, 130(4), 363–383.

    CAS  Google Scholar 

  • Ganesalingam, J., An, J., Shaw, C. E., Shaw, G., Lacomis, D., & Bowser, R. (2011). Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. Journal of Neurochemistry, 117(3), 528–537. https://doi.org/10.1111/j.1471-4159.2011.07224.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, J., Wang, L., Huntley, M. L., Perry, G., & Wang, X. (2018). Pathomechanisms of TDP-43 in neurodegeneration. Journal of Neurochemistry, 146(1), 7–20. https://doi.org/10.1111/jnc.14327

    Article  CAS  Google Scholar 

  • Genestine, M., Caricati, E., Fico, A., Richelme, S., Hassani, H., Sunyach, C., … Dono, R. (2011). Enhanced neuronal Met signalling levels in ALS mice delay disease onset. Cell Death & Disease, 2, e130. https://doi.org/10.1038/cddis.2011.11

    Article  CAS  Google Scholar 

  • Gibbs, K. L., Kalmar, B., Rhymes, E. R., Fellows, A. D., Ahmed, M., Whiting, P., … Schiavo, G. (2018). Inhibiting p38 MAPK alpha rescues axonal retrograde transport defects in a mouse model of ALS. Cell Death & Disease, 9(6), 1–16.

    CAS  Google Scholar 

  • Giess, R., Holtmann, B., Braga, M., Grimm, T., Müller-Myhsok, B., Toyka, K. V., & Sendtner, M. (2002). Early onset of severe familial amyotrophic lateral sclerosis with a SOD-1 mutation: Potential impact of CNTF as a candidate modifier gene. The American Journal of Human Genetics, 70(5), 1277–1286.

    CAS  PubMed  Google Scholar 

  • Glass, J. D., Boulis, N. M., Johe, K., Rutkove, S. B., Federici, T., Polak, M., … Feldman, E. L. (2012). Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: Results of a phase I trial in 12 patients. Stem Cells, 30(6), 1144–1151. https://doi.org/10.1002/stem.1079

    Article  CAS  PubMed  Google Scholar 

  • Gordon, P. H., Moore, D. H., Miller, R. G., Florence, J. M., Verheijde, J. L., Doorish, C., … Group, W. A. S. (2007). Efficacy of minocycline in patients with amyotrophic lateral sclerosis: A phase III randomised trial. The Lancet Neurology, 6(12), 1045–1053. https://doi.org/10.1016/S1474-4422(07)70270-3.

  • Gouel, F., Rolland, A.-S., Devedjian, J.-C., Burnouf, T., & Devos, D. (2019). Past and future of neurotrophic growth factors therapies in ALS: From single neurotrophic growth factor to stem cells and human platelet lysates. Frontiers in Neurology, 10, 835.

    PubMed  PubMed Central  Google Scholar 

  • Gould, T. W., Buss, R. R., Vinsant, S., Prevette, D., Sun, W., Knudson, C. M., … Oppenheim, R. W. (2006). Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. Journal of Neuroscience, 26(34), 8774–8786. https://doi.org/10.1523/JNEUROSCI.2315-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Granatiero, V., Sayles, N. M., Savino, A. M., Konrad, C., Kharas, M. G., Kawamata, H., & Manfredi, G. (2021). Modulation of the IGF1R-MTOR pathway attenuates motor neuron toxicity of human ALS SOD1(G93A) astrocytes. Autophagy, 1–14. https://doi.org/10.1080/15548627.2021.1899682

  • Grothe, C., Haastert, K., & Jungnickel, J. (2006). Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration – Lessons from in vivo studies in mice and rats. Brain Research Reviews, 51(2), 293–299. S0165-0173(05)00174-8 [pii].. https://doi.org/10.1016/j.brainresrev.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  • Grothe, C., Wewetzer, K., Lagrange, A., & Unsicker, K. (1991). Effects of basic fibroblast growth factor on survival and choline acetyltransferase development of spinal cord neurons. Brain Research. Developmental Brain Research, 62(2), 257–261.

    CAS  PubMed  Google Scholar 

  • Grumbles, R. M., Sesodia, S., Wood, P. M., & Thomas, C. K. (2009). Neurotrophic factors improve motoneuron survival and function of muscle reinnervated by embryonic neurons. Journal of Neuropathology and Experimental Neurology, 68(7), 736–746. https://doi.org/10.1097/NEN.0b013e3181a9360f

    Article  CAS  PubMed  Google Scholar 

  • Grundström, E., Lindholm, D., Johansson, A., Blennow, K., & Askmark, H. (2000). GDNF but not BDNF is increased in cerebrospinal fluid in amyotrophic lateral sclerosis. Neuroreport, 11(8), 1781–1783.

    PubMed  Google Scholar 

  • Guo, W., Pang, K., Chen, Y., Wang, S., Li, H., Xu, Y., … Lopes-Rodrigues, V. (2019). TrkB agonistic antibodies superior to BDNF: Utility in treating motoneuron degeneration. Neurobiology of Disease, 132, 104590.

    CAS  PubMed  Google Scholar 

  • Guo, Y., Wang, Q., Zhang, K., An, T., Shi, P., Li, Z., … Li, C. (2012). HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice. Brain Research, 1460, 88–95. https://doi.org/10.1016/j.brainres.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  • Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., … Deng, H. X. (1994). Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science, 264(5166), 1772–1775.

    CAS  PubMed  Google Scholar 

  • Haase, G., Kennel, P., Pettmann, B., Vigne, E., Akli, S., Revah, F., … Kahn, A. (1997). Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors. Nature Medicine, 3(4), 429–436.

    CAS  PubMed  Google Scholar 

  • Hallböök, F., Ibáñez, C. F., & Persson, H. (1991). Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron, 6(5), 845–858.

    PubMed  Google Scholar 

  • Hatzipetros, T., Bogdanik, L. P., Tassinari, V. R., Kidd, J. D., Moreno, A. J., Davis, C., … Lutz, C. (2014). C57BL/6J congenic Prp-TDP43A315T mice develop progressive neurodegeneration in the myenteric plexus of the colon without exhibiting key features of ALS. Brain Research, 1584, 59–72.

    CAS  PubMed  Google Scholar 

  • Henderson, C. E., Camu, W., Mettling, C., Gouin, A., Poulsen, K., Karihaloo, M., … Armanini, M. P. (1993). Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature, 363(6426), 266–270. https://doi.org/10.1038/363266a0

    Article  CAS  PubMed  Google Scholar 

  • Highley, J. R., Kirby, J., Jansweijer, J. A., Webb, P. S., Hewamadduma, C. A., Heath, P. R., … Cooper-Knock, J. (2014). Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones. Neuropathology and Applied Neurobiology, 40(6), 670–685.

    CAS  PubMed  Google Scholar 

  • Hobson, M. I., Green, C. J., & Terenghi, G. (2000). VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. Journal of Anatomy, 197(Pt 4), 591–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hohn, A., Leibrock, J., Bailey, K., & Barde, Y. A. (1990). Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature, 344(6264), 339–341. https://doi.org/10.1038/344339a0

    Article  CAS  PubMed  Google Scholar 

  • Howe, C. L., Bergstrom, R. A., & Horazdovsky, B. F. (2009). Subcutaneous IGF-1 is not beneficial in 2-year ALS trial. Neurology, 73(15), 1247; author reply 1247–1248. 73/15/1247 [pii]. https://doi.org/10.1212/WNL.0b013e3181b26ae6

    Article  PubMed  Google Scholar 

  • Hwang, D. H., Lee, H. J., Park, I. H., Seok, J. I., Kim, B. G., Joo, I. S., & Kim, S. U. (2009). Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Therapy, 16(10), 1234–1244. https://doi.org/10.1038/gt.2009.80

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, K., Klinkosz, B., Greene, T., Cedarbaum, J. M., Wong, V., Lindsay, R. M., & Mitsumoto, H. (1995). Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Annals of Neurology, 37(4), 505–511. https://doi.org/10.1002/ana.410370413

    Article  CAS  PubMed  Google Scholar 

  • Ishigaki, A., Aoki, M., Nagai, M., Warita, H., Kato, S., Kato, M., … Itoyama, Y. (2007). Intrathecal delivery of hepatocyte growth factor from amyotrophic lateral sclerosis onset suppresses disease progression in rat amyotrophic lateral sclerosis model. Journal of Neuropathology and Experimental Neurology, 66(11), 1037–1044.

    CAS  PubMed  Google Scholar 

  • Ito, K., & Enomoto, H. (2016). Retrograde transport of neurotrophic factor signaling: Implications in neuronal development and pathogenesis. The Journal of Biochemistry, 160(2), 77–85.

    CAS  PubMed  Google Scholar 

  • Jaiswal, M. K. (2019). Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs. Medicinal Research Reviews, 39(2), 733–748.

    PubMed  Google Scholar 

  • Johansson, A., Larsson, A., Nygren, I., Blennow, K., & Askmark, H. (2003). Increased serum and cerebrospinal fluid FGF-2 levels in amyotrophic lateral sclerosis. Neuroreport, 14(14), 1867–1869. https://doi.org/10.1097/01.wnr.0000093756.78398.f0

    Article  CAS  PubMed  Google Scholar 

  • Jung, W., Castren, E., Odenthal, M., Vande Woude, G. F., Ishii, T., Dienes, H. P., … Schirmacher, P. (1994). Expression and functional interaction of hepatocyte growth factor-scatter factor and its receptor c-met in mammalian brain. The Journal of Cell Biology, 126(2), 485–494.

    CAS  PubMed  Google Scholar 

  • Kadoyama, K., Funakoshi, H., Ohya, W., & Nakamura, T. (2007). Hepatocyte growth factor (HGF) attenuates gliosis and motoneuronal degeneration in the brainstem motor nuclei of a transgenic mouse model of ALS. Neuroscience Research, 59(4), 446–456. https://doi.org/10.1016/j.neures.2007.08.017

    Article  CAS  PubMed  Google Scholar 

  • Kalra, S., Genge, A., & Arnold, D. L. (2003). A prospective, randomized, placebo-controlled evaluation of corticoneuronal response to intrathecal BDNF therapy in ALS using magnetic resonance spectroscopy: Feasibility and results. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 4(1), 22–26. V1B00Y3JAV9HG88G [pii].

    CAS  PubMed  Google Scholar 

  • Kano, O., Beers, D. R., Henkel, J. S., & Appel, S. H. (2012). Peripheral nerve inflammation in ALS mice: Cause or consequence. Neurology, 78(11), 833–835. https://doi.org/10.1212/WNL.0b013e318249f776

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaspar, B. K. (2003). Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science, 301(5634), 839–842. https://doi.org/10.1126/science.1086137

    Article  CAS  PubMed  Google Scholar 

  • Kato, S., Funakoshi, H., Nakamura, T., Kato, M., Nakano, I., Hirano, A., & Ohama, E. (2003). Expression of hepatocyte growth factor and c-Met in the anterior horn cells of the spinal cord in the patients with amyotrophic lateral sclerosis (ALS): Immunohistochemical studies on sporadic ALS and familial ALS with superoxide dismutase 1 gene mutation. Acta Neuropathologica, 106(2), 112–120. https://doi.org/10.1007/s00401-003-0708-z

    Article  CAS  PubMed  Google Scholar 

  • Kefalakes, E., Böselt, S., Sarikidi, A., Ettcheto, M., Bursch, F., Naujock, M., … Petri, S. (2019). Characterizing the multiple roles of FGF-2 in SOD1(G93A) ALS mice in vivo and in vitro. Journal of Cellular Physiology, 234(5), 7395–7410. https://doi.org/10.1002/jcp.27498

    Article  CAS  PubMed  Google Scholar 

  • Kiernan, M. C. (2018). Motor neuron disease in 2017: Progress towards therapy in motor neuron disease. Nature Reviews Neurology, 14(2), 65.

    PubMed  Google Scholar 

  • Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., … Zoing, M. C. (2011). Amyotrophic lateral sclerosis. Lancet, 377(9769), 942–955. https://doi.org/10.1016/S0140-6736(10)61156-7

    Article  CAS  PubMed  Google Scholar 

  • Klein, S. M., Behrstock, S., McHugh, J., Hoffmann, K., Wallace, K., Suzuki, M., … Svendsen, C. N. (2005). GDNF delivery using human neural progenitor cells in a rat model of ALS. Human Gene Therapy, 16(4), 509–521.

    CAS  PubMed  Google Scholar 

  • Klopstock, T., Elstner, M., & Bender, A. (2011). Creatine in mouse models of neurodegeneration and aging. Amino Acids, 40(5), 1297–1303. https://doi.org/10.1007/s00726-011-0850-1

    Article  CAS  PubMed  Google Scholar 

  • Knippenberg, S., Rath, K. J., Böselt, S., Thau-Habermann, N., Schwarz, S. C., Dengler, R., … Petri, S. (2017). Intraspinal administration of human spinal cord-derived neural progenitor cells in the G93A-SOD1 mouse model of ALS delays symptom progression, prolongs survival and increases expression of endogenous neurotrophic factors. Journal of Tissue Engineering and Regenerative Medicine, 11(3), 751–764. https://doi.org/10.1002/term.1972

    Article  CAS  PubMed  Google Scholar 

  • Koliatsos, V. E., Clatterbuck, R. E., Winslow, J. W., Cayouette, M. H., & Price, D. L. (1993). Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron, 10(3), 359–367.

    CAS  PubMed  Google Scholar 

  • Korkmaz, O. T., Aytan, N., Carreras, I., Choi, J.-K., Kowall, N. W., Jenkins, B. G., & Dedeoglu, A. (2014). 7, 8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis. Neuroscience Letters, 566, 286–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosai, K., Matsumoto, K., Funakoshi, H., & Nakamura, T. (1999). Hepatocyte growth factor prevents endotoxin-induced lethal hepatic failure in mice. Hepatology, 30(1), 151–159. S0270913999003213 [pii]. https://doi.org/10.1002/hep.510300102

    Article  CAS  PubMed  Google Scholar 

  • Krakora, D., Mulcrone, P., Meyer, M., Lewis, C., Bernau, K., Gowing, G., … Suzuki, M. (2013). Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model. Molecular Therapy. https://doi.org/10.1038/mt.2013.108

  • Lai, E. C., Felice, K. J., Festoff, B. W., Gawel, M. J., Gelinas, D. F., Kratz, R., … Rudnicki, S. A. (1997). Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I Study Group. Neurology, 49(6), 1621–1630.

    CAS  PubMed  Google Scholar 

  • Lamballe, F., Genestine, M., Caruso, N., Arce, V., Richelme, S., Helmbacher, F., & Maina, F. (2011). Pool-specific regulation of motor neuron survival by neurotrophic support. The Journal of Neuroscience, 31(31), 11144–11158. https://doi.org/10.1523/JNEUROSCI.2198-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrechts, D., Poesen, K., Fern√°ndez-Santiago, R., Al-Chalabi, A., Del Bo, R., Van Vught, P. W. J., … Carmeliet, P. (2009). Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis: Increased susceptibility in male carriers of the -2578AA genotype. Journal of Medical Genetics, 46(12), 840–846.

    CAS  PubMed  Google Scholar 

  • Lambrechts, D., Storkebaum, E., Morimoto, M., Del-Favero, J., Desmet, F., Marklund, S. L., … Carmeliet, P. (2003). VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genetics, 34(4), 383–394. https://doi.org/10.1038/ng1211

    Article  CAS  PubMed  Google Scholar 

  • Lee, N., Spearry, R. P., Rydyznski, C. E., & MacLennan, A. J. (2019). Muscle ciliary neurotrophic factor receptor α contributes to motor neuron STAT 3 activation following peripheral nerve lesion. European Journal of Neuroscience, 49(9), 1084–1090.

    Google Scholar 

  • Lee, S. H., Lee, N., Kim, S., Lee, J., Choi, W., Yu, S. S., … Kim, S. (2019). Intramuscular delivery of HGF-expressing recombinant AAV improves muscle integrity and alleviates neurological symptoms in the nerve crush and SOD1-G93A transgenic mouse models. Biochemical and Biophysical Research Communications, 517(3), 452–457.

    CAS  PubMed  Google Scholar 

  • Leitner, M. L., Molliver, D. C., Osborne, P. A., Vejsada, R., Golden, J. P., Lampe, P. A., … Johnson, E. M. (1999). Analysis of the retrograde transport of glial cell line-derived neurotrophic factor (GDNF), Neurturin, and persephin suggests that in vivo signaling for the GDNF family is GFRα coreceptor-specific. Journal of Neuroscience, 19(21), 9322–9331.

    CAS  PubMed  Google Scholar 

  • Lepore, A. C., Haenggeli, C., Gasmi, M., Bishop, K. M., Bartus, R. T., Maragakis, N. J., & Rothstein, J. D. (2007). Intraparenchymal spinal cord delivery of adeno-associated virus IGF-1 is protective in the SOD1G93A model of ALS. Brain Research, 1185, 256–265. https://doi.org/10.1016/j.brainres.2007.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levi-Montalcini, R., & Cohen, S. (1960). Effects of the extract of the mouse submaxillary salivary glands on the sympathetic system of mammals. Annals of the New York Academy of Sciences, 85, 324–341.

    CAS  PubMed  Google Scholar 

  • Levi-Montalcini, R., & Hamburger, V. (1951). Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. The Journal of Experimental Zoology, 116(2), 321–361.

    CAS  PubMed  Google Scholar 

  • Li, B., Xu, W., Luo, C., Gozal, D., & Liu, R. (2003). VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death. Brain Research Molecular Brain Research, 111(1–2), 155–164.

    CAS  PubMed  Google Scholar 

  • Li, L., Oppenheim, R. W., Lei, M., & Houenou, L. J. (1994). Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse. The Journal of Neurobiology, 25(7), 759–766. https://doi.org/10.1002/neu.480250702

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Brakefield, D., Pan, Y., Hunter, D., Myckatyn, T. M., & Parsadanian, A. (2007). Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS. Experimental Neurology, 203(2), 457–471.

    CAS  PubMed  Google Scholar 

  • Lin, L. F., Doherty, D. H., Lile, J. D., Bektesh, S., & Collins, F. (1993). GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 260(5111), 1130–1132.

    CAS  PubMed  Google Scholar 

  • Lin, L. F., Mismer, D., Lile, J. D., Armes, L. G., Butler, E. T., 3rd, Vannice, J. L., & Collins, F. (1989). Purification, cloning, and expression of ciliary neurotrophic factor (CNTF). Science, 246(4933), 1023–1025.

    CAS  PubMed  Google Scholar 

  • Liu, H.-N., Tjostheim, S., Dasilva, K., Taylor, D., Zhao, B., Rakhit, R., … Robertson, J. (2012). Targeting of monomer/misfolded SOD1 as a therapeutic strategy for amyotrophic lateral sclerosis. Journal of Neuroscience, 32(26), 8791–8799. https://doi.org/10.1523/JNEUROSCI.5053-11.2012

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Andreucci, A., Iwamoto, N., Yin, Y., Yang, H., Liu, F., … Vargeese, C. (2021). WVE-004, an investigational stereopure antisense oligonucleotide for the treatment of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (2302). Neurology, 96(15 Suppl), 2302.

    Google Scholar 

  • Logroscino, G., Piccininni, M., Marin, B., Nichols, E., Abd-Allah, F., Abdelalim, A., … Chaiah, Y. (2018). Global, regional, and national burden of motor neuron diseases 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 17(12), 1083–1097.

    Google Scholar 

  • Lu, C.-H., Petzold, A., Kalmar, B., Dick, J., Malaspina, A., & Greensmith, L. (2012). Plasma Neurofilament heavy chain levels correlate to markers of late stage disease progression and treatment response in SOD1(G93A) mice that model ALS. PLoS One, 7(7), e40998. https://doi.org/10.1371/journal.pone.0040998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunetta, C., Serafini, M., Prelle, A., Magni, P., Dozio, E., Ruscica, M., … Silani, V. (2012). Impaired expression of insulin-like growth factor-1 system in skeletal muscle of amyotrophic lateral sclerosis patients. Muscle & Nerve, 45(2), 200–208. https://doi.org/10.1002/mus.22288

    Article  CAS  Google Scholar 

  • Mackenzie, I. R., Bigio, E. H., Ince, P. G., Geser, F., Neumann, M., Cairns, N. J., … Stewart, H. (2007). Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 61(5), 427–434.

    CAS  Google Scholar 

  • Madhavan, R., & Peng, H. B. (2006). HGF induction of postsynaptic specializations at the neuromuscular junctionz. The Journal of Neurobiology, 66(2), 134–147. https://doi.org/10.1002/neu.20206

    Article  CAS  PubMed  Google Scholar 

  • Masu, Y., Wolf, E., Holtmann, B., Sendtner, M., Brem, G., & Thoenen, H. (1993). Disruption of the CNTF gene results in motor neuron degeneration. Nature, 365(6441), 27–32. https://doi.org/10.1038/365027a0

    Article  CAS  PubMed  Google Scholar 

  • Mathis, S., Goizet, C., Soulages, A., Vallat, J.-M., & Masson, G. L. (2019). Genetics of amyotrophic lateral sclerosis: A review. Journal of the Neurological Sciences, 399, 217–226. https://doi.org/10.1016/j.jns.2019.02.030

    Article  CAS  PubMed  Google Scholar 

  • Mazzini, L., Fagioli, F., Boccaletti, R., Mareschi, K., Oliveri, G., Olivieri, C., … Madon, E. (2003). Stem cell therapy in amyotrophic lateral sclerosis: A methodological approach in humans. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 4(3), 158–161. https://doi.org/10.1080/14660820310014653

    Article  PubMed  Google Scholar 

  • Mazzini, L., Gelati, M., Profico, D. C., Sorarù, G., Ferrari, D., Copetti, M., … Vescovi, A. L. (2019). Results from phase I clinical trial with intraspinal injection of neural stem cells in amyotrophic lateral sclerosis: A long-term outcome. Stem Cells Translational Medicine, 8(9), 887–897. https://doi.org/10.1002/sctm.18-0154

    Article  PubMed  PubMed Central  Google Scholar 

  • Meier, C., Parmantier, E., Brennan, A., Mirsky, R., & Jessen, K. R. (1999). Developing Schwann cells acquire the ability to survive without axons by establishing an autocrine circuit involving insulin-like growth factor, neurotrophin-3, and platelet-derived growth factor-BB. The Journal of Neuroscience, 19(10), 3847–3859.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messi, M. L., Clark, H. M., Prevette, D. M., Oppenheim, R. W., & Delbono, O. (2007). The lack of effect of specific overexpression of IGF-1 in the central nervous system or skeletal muscle on pathophysiology in the G93A SOD-1 mouse model of ALS. Experimental Neurology, 207(1), 52–63. https://doi.org/10.1016/j.expneurol.2007.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, R. G., Petajan, J. H., Bryan, W. W., Armon, C., Barohn, R. J., Goodpasture, J. C., … Stromatt, S. C. (1996). A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. rhCNTF ALS Study Group. Annals of Neurology, 39(2), 256–260. https://doi.org/10.1002/ana.410390215

    Article  CAS  PubMed  Google Scholar 

  • Miller, T., Cudkowicz, M., Shaw, P. J., Andersen, P. M., Atassi, N., Bucelli, R. C., … Ludolph, A. L. (2020). Phase 1–2 trial of antisense oligonucleotide tofersen for SOD1 ALS. New England Journal of Medicine, 383(2), 109–119.

    CAS  Google Scholar 

  • Miranda-Lourenço, C., Ribeiro-Rodrigues, L., Fonseca-Gomes, J., Tanqueiro, S. R., Belo, R. F., Ferreira, C. B., … Costa-Coelho, T. (2020). Challenges of BDNF-based therapies: From common to rare diseases. Pharmacological Research, 105281.

    Google Scholar 

  • Mitsuma, N., Yamamoto, M., Li, M., Ito, Y., Mitsuma, T., Mutoh, T., … Sobue, G. (1999). Expression of GDNF receptor (RET and GDNFR-α) mRNAs in the spinal cord of patients with amyotrophic lateral sclerosis. Brain Research, 820(1–2), 77–85.

    CAS  PubMed  Google Scholar 

  • Mòdol-Caballero, G., García-Lareu, B., Herrando-Grabulosa, M., Verdés, S., López-Vales, R., Pagès, G., … Bosch, A. (2021). Specific expression of glial-derived neurotrophic factor in muscles as gene therapy strategy for amyotrophic lateral sclerosis. Neurotherapeutics, 1–14.

    Google Scholar 

  • Mohajeri, M. H., Figlewicz, D. A., & Bohn, M. C. (1999). Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Human Gene Therapy, 10(11), 1853–1866.

    CAS  PubMed  Google Scholar 

  • Moreno-Igoa, M., Calvo, A. C., Penas, C., Manzano, R., Oliván, S., Muñoz, M. J., … Osta Pinzolas, R. (2009). Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy. Journal of Molecular Medicine. https://doi.org/10.1007/s00109-009-0556-y

  • Morfini, G. A., Bosco, D. A., Brown, H., Gatto, R., Kaminska, A., Song, Y., … Berth, S. (2013). Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase. PLoS One, 8(6), e65235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munch, C., Sedlmeier, R., Meyer, T., Homberg, V., Sperfeld, A. D., Kurt, A., … Ludolph, A. C. (2004). Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology, 63(4), 724–726. 63/4/724 [pii].

    CAS  PubMed  Google Scholar 

  • Nafissi, S., Kazemi, H., Tiraihi, T., Beladi-Moghadam, N., Faghihzadeh, S., Faghihzadeh, E., … Taheri, T. (2016). Intraspinal delivery of bone marrow stromal cell-derived neural stem cells in patients with amyotrophic lateral sclerosis: A safety and feasibility study. Journal of the Neurological Sciences, 362, 174–181. https://doi.org/10.1016/j.jns.2016.01.051

    Article  PubMed  Google Scholar 

  • Nagano, I., Ilieva, H., Shiote, M., Murakami, T., Yokoyama, M., Shoji, M., & Abe, K. (2005). Therapeutic benefit of intrathecal injection of insulin-like growth factor-1 in a mouse model of Amyotrophic Lateral Sclerosis. Journal of the Neurological Sciences, 235(1–2), 61–68.

    CAS  PubMed  Google Scholar 

  • Nagano, I., Shiote, M., Murakami, T., Kamada, H., Hamakawa, Y., Matsubara, E., … Abe, K. (2005). Beneficial effects of intrathecal IGF-1 administration in patients with amyotrophic lateral sclerosis. Neurological Research, 27(7), 768–772. https://doi.org/10.1179/016164105X39860

  • Nagel, G., Peter, R. S., Rosenbohm, A., Koenig, W., Dupuis, L., Rothenbacher, D., & Ludolph, A. C. (2020). Association of insulin-like growth factor 1 concentrations with risk for and prognosis of amyotrophic lateral sclerosis – results from the ALS registry Swabia. Scientific Reports, 10(1), 736. https://doi.org/10.1038/s41598-020-57744-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura, T., Tomita, Y., Hirai, R., Yamaoka, K., Kaji, K., & Ichihara, A. (1985). Inhibitory effect of transforming growth factor-beta on DNA synthesis of adult rat hepatocytes in primary culture. Biochemical and Biophysical Research Communications, 133(3), 1042–1050. 0006-291X(85)91241-0 [pii].

    CAS  PubMed  Google Scholar 

  • Nakao, N., Odin, P., Lindvall, O., & Brundin, P. (1996). Differential trophic effects of basic fibroblast growth factor, insulin-like growth factor-1, and neurotrophin-3 on striatal neurons in culture. Experimental Neurology, 138(1), 144–157. https://doi.org/10.1006/exnr.1996.0053

    Article  CAS  PubMed  Google Scholar 

  • Neumann, M. (2009). Molecular neuropathology of TDP-43 proteinopathies. International Journal of Molecular Sciences, 10(1), 232–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng Kee Kwong, K. C., Harbham, P. K., Selvaraj, B. T., Gregory, J. M., Pal, S., Hardingham, G. E., … Mehta, A. R. (2021). 40 years of CSF toxicity studies in ALS: What have we learnt about ALS pathophysiology? Frontiers in Molecular Neuroscience, 14, 37.

    Google Scholar 

  • Nguyen, L., Montrasio, F., Pattamatta, A., Tusi, S. K., Bardhi, O., Meyer, K. D., … Ranum, L. P. W. (2020). Antibody therapy targeting RAN proteins rescues C9 ALS/FTD phenotypes in C9orf72 mouse model. Neuron, 105(4), 645–662.e611. https://doi.org/10.1016/j.neuron.2019.11.007

    Article  CAS  PubMed  Google Scholar 

  • Ochs, G., Penn, R. D., York, M., Giess, R., Beck, M., Tonn, J., … Toyka, K. V. (2000). A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1(3), 201–206.

    CAS  PubMed  Google Scholar 

  • Okano, H., Yasuda, D., Fujimori, K., Morimoto, S., & Takahashi, S. (2020). Ropinirole, a new ALS drug candidate developed using iPSCs. Trends in Pharmacological Sciences, 41(2), 99–109.

    CAS  PubMed  Google Scholar 

  • Okura, Y., Arimoto, H., Tanuma, N., Matsumoto, K., Nakamura, T., Yamashima, T., … Matsumoto, Y. (1999). Analysis of neurotrophic effects of hepatocyte growth factor in the adult hypoglossal nerve axotomy model. The European Journal of Neuroscience, 11(11), 4139–4144.

    CAS  PubMed  Google Scholar 

  • Oosthuyse, B., Moons, L., Storkebaum, E., Beck, H., Nuyens, D., Brusselmans, K., … Carmeliet, P. (2001). Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nature Genetics, 28(2), 131–138. https://doi.org/10.1038/88842

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim, R. W., Yin, Q. W., Prevette, D., & Yan, Q. (1992). Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature, 360(6406), 755–757. https://doi.org/10.1038/360755a0

    Article  CAS  PubMed  Google Scholar 

  • Paganoni, S., Hendrix, S., Dickson, S. P., Knowlton, N., Macklin, E. A., Berry, J. D., … Cudkowicz, M. E. (2021). Long-term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis. Muscle & Nerve, 63(1), 31–39. https://doi.org/10.1002/mus.27091

    Article  CAS  Google Scholar 

  • Pan, W., & Kastin, A. J. (2000). Interactions of IGF-1 with the blood-brain barrier in vivo and in situ. Neuroendocrinology, 72(3), 171–178.

    CAS  PubMed  Google Scholar 

  • Pan, W., Kastin, A. J., Maness, L. M., & Brennan, J. M. (1999). Saturable entry of ciliary neurotrophic factor into brain. Neuroscience Letters, 263(1), 69–71.

    CAS  PubMed  Google Scholar 

  • Papadeas, S. T., Kraig, S. E., O’Banion, C., Lepore, A. C., & Maragakis, N. J. (2011). Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo. Proceedings of the National Academy of Sciences, 108(43), 17803–17808.

    CAS  Google Scholar 

  • Park, S., Kim, H.-T., Yun, S., Kim, I.-S., Lee, J., Lee, I.-S., & Park, K. I. (2009). Growth factor-expressing human neural progenitor cell grafts protect motor neurons but do not ameliorate motor performance and survival in ALS mice. Experimental & Molecular Medicine, 41(7), 487–500. https://doi.org/10.3858/emm.2009.41.7.054

    Article  CAS  Google Scholar 

  • Perlson, E., Jeong, G.-B., Ross, J. L., Dixit, R., Wallace, K. E., Kalb, R. G., & Holzbaur, E. L. F. (2009). A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. The Journal of Neuroscience, 29(31), 9903–9917. https://doi.org/10.1523/JNEUROSCI.0813-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petri, S., Krampfl, K., Kuhlemann, K., Dengler, R., & Grothe, C. (2009). Preserved expression of fibroblast growth factor (FGF)-2 and FGF receptor 1 in brain and spinal cord of amyotrophic lateral sclerosis patients. Histochemistry and Cell Biology, 131(4), 509–519. https://doi.org/10.1007/s00418-008-0549-x

    Article  CAS  PubMed  Google Scholar 

  • Petrou, P., Gothelf, Y., Argov, Z., Gotkine, M., Levy, Y. S., Kassis, I., … Karussis, D. (2016). Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: Results of phase 1/2 and 2a clinical trials. JAMA Neurology, 73(3), 337–344. https://doi.org/10.1001/jamaneurol.2015.4321

    Article  PubMed  Google Scholar 

  • Peviani, M., Caron, I., Pizzasegola, C., Gensano, F., Tortarolo, M., & Bendotti, C. (2010). Unraveling the complexity of amyotrophic lateral sclerosis: Recent advances from the transgenic mutant SOD1 mice. CNS & Neurological Disorders Drug Targets, 9(4), 491–503.

    CAS  Google Scholar 

  • Poduslo, J. F., & Curran, G. L. (1996). Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Research Molecular Brain Research, 36(2), 280–286.

    CAS  PubMed  Google Scholar 

  • Poo, M. M. (2001). Neurotrophins as synaptic modulators. Nature Reviews. Neuroscience, 2(1), 24–32. https://doi.org/10.1038/35049004

    Article  CAS  PubMed  Google Scholar 

  • Puentes, F., Malaspina, A., van Noort, J. M., & Amor, S. (2016). Non-neuronal cells in ALS: Role of glial, immune cells and blood-CNS barriers. Brain Pathology, 26(2), 248–257. https://doi.org/10.1111/bpa.12352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puls, I., Jonnakuty, C., LaMonte, B. H., Holzbaur, E. L., Tokito, M., Mann, E., … Fischbeck, K. H. (2003). Mutant dynactin in motor neuron disease. Nature Genetics, 33(4), 455–456. https://doi.org/10.1038/ng1123. ng1123 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Ragagnin, A. M., Shadfar, S., Vidal, M., Jamali, S., & Atkin, J. D. (2019). Motor neuron susceptibility in ALS/FTD. Frontiers in Neuroscience, 13, 532.

    PubMed  PubMed Central  Google Scholar 

  • Rando, A., Pastor, D., Viso-León, M. C., Martínez, A., Manzano, R., Navarro, X., … Martínez, S. (2018). Intramuscular transplantation of bone marrow cells prolongs the lifespan of SOD1(G93A) mice and modulates expression of prognosis biomarkers of the disease. Stem Cell Research & Therapy, 9(1), 90. https://doi.org/10.1186/s13287-018-0843-z

    Article  CAS  Google Scholar 

  • Reaume, A. G., Elliott, J. L., Hoffman, E. K., Kowall, N. W., Ferrante, R. J., Siwek, D. F., … Snider, W. D. (1996). Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genetics, 13(1), 43–47.

    CAS  PubMed  Google Scholar 

  • Reddy, L. V., Koirala, S., Sugiura, Y., Herrera, A. A., & Ko, C. P. (2003). Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo. Neuron, 40(3), 563–580.

    CAS  PubMed  Google Scholar 

  • Renton, A. E., Chiò, A., & Traynor, B. J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nature Neuroscience, 17(1), 17–23.

    CAS  PubMed  Google Scholar 

  • Renton, A. E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J. R., … Traynor, B. J. (2011). A hexanucleotide repeat expansion in C9ORF72 is the supplememtary. Neuron, 72(2, Suppl). https://doi.org/10.1016/j.neuron.2011.09.010

  • Riethmacher, D., Sonnenberg-Riethmacher, E., Brinkmann, V., Yamaai, T., Lewin, G. R., & Birchmeier, C. (1997). Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature, 389(6652), 725–730. https://doi.org/10.1038/39593

    Article  CAS  PubMed  Google Scholar 

  • Rind, H. B., & von Bartheld, C. S. (2002). Anterograde axonal transport of internalized GDNF in sensory and motor neurons. Neuroreport, 13(5), 659–664.

    CAS  PubMed  Google Scholar 

  • Rogers, M.-L., & Rush, R. A. (2012). Non-viral gene therapy for neurological diseases, with an emphasis on targeted gene delivery. Journal of Controlled Release, 157, 183–189.

    CAS  PubMed  Google Scholar 

  • Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., … Deng, H.-X. (1993). Mutations in cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362(6415), 59–62.

    CAS  PubMed  Google Scholar 

  • Rotwein, P., Burgess, S. K., Milbrandt, J. D., & Krause, J. E. (1988). Differential expression of insulin-like growth factor genes in rat central nervous system. Proceedings of the National Academy of Sciences of the United States of America, 85(1), 265–269.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roux, S., Saint Cloment, C., Curie, T., Girard, E., Mena, F.-J. M., Barbier, J., … Brûlet, P. (2006). Brain-derived neurotrophic factor facilitates in vivointernalization of tetanus neurotoxin C-terminal fragment fusion proteins in mature mouse motor nerve terminals. European Journal of Neuroscience, 24(6), 1546–1554. https://doi.org/10.1111/j.1460-9568.2006.05030.x

    Article  Google Scholar 

  • Rudnicki, S. A., Berry, J. D., Ingersoll, E., Archibald, D., Cudkowicz, M. E., Kerr, D. A., & Dong, Y. (2012). Dexpramipexole effects on functional decline and survival in subjects with amyotrophic lateral sclerosis in a phase II study: Subgroup analysis of demographic and clinical characteristics. Amyotrophic Lateral Sclerosis. https://doi.org/10.3109/17482968.2012.723723

  • Ryan, M., Heverin, M., McLaughlin, R. L., & Hardiman, O. (2019). Lifetime risk and heritability of amyotrophic lateral sclerosis. JAMA Neurology, 76(11), 1367–1374.

    PubMed  PubMed Central  Google Scholar 

  • Sadan, O., Melamed, E., & Offen, D. (2009). Bone-marrow-derived mesenchymal stem cell therapy for neurodegenerative diseases. Expert Opinion on Biological Therapy, 9(12), 1487–1497. https://doi.org/10.1517/14712590903321439

    Article  CAS  PubMed  Google Scholar 

  • Sagot, Y., Rossé, T., Vejsada, R., Perrelet, D., & Kato, A. C. (1998). Differential effects of neurotrophic factors on motoneuron retrograde labeling in a murine model of motoneuron disease. The Journal of Neuroscience, 18(3), 1132–1141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, S., Kranz, J. E., Cole, J., Lincecum, J. M., Thompson, K., Kelly, N., … Heywood, J. A. (2008). Design, power, and interpretation of studies in the standard murine model of ALS. Amyotrophic Lateral Sclerosis: Official Publication of the World Federation of Neurology Research Group on Motor Neuron Diseases, 9(1), 4–15. https://doi.org/10.1080/17482960701856300

    Article  CAS  Google Scholar 

  • Selvaraj, B. T., Frank, N., Bender, F. L. P., Asan, E., & Sendtner, M. (2012). Local axonal function of STAT3 rescues axon degeneration in the pmn model of motoneuron disease. The Journal of Cell Biology, 199(3), 437–451. https://doi.org/10.1083/jcb.201203109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sendtner, M., Schmalbruch, H., Stöckli, K. A., Carroll, P., Kreutzberg, G. W., & Thoenen, H. (1992). Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature, 358(6386), 502–504. https://doi.org/10.1038/358502a0

    Article  CAS  PubMed  Google Scholar 

  • Sephton, C. F., Good, S. K., Atkin, S., Dewey, C. M., Mayer, P., Herz, J., & Yu, G. (2010). TDP-43 is a developmentally regulated protein essential for early embryonic development. Journal of Biological Chemistry, 285(9), 6826–6834.

    CAS  Google Scholar 

  • Shantanu, S., Vijayalakshmi, K., Shruthi, S., Sagar, B. C., Sathyaprabha, T., Nalini, A., … Alladi, P. A. (2017). VEGF alleviates ALS-CSF induced cytoplasmic accumulations of TDP-43 and FUS/TLS in NSC-34 cells. Journal of Chemical Neuroanatomy, 81, 48–52.

    CAS  PubMed  Google Scholar 

  • Sheard, P. W., Bewick, G. S., Woolley, A. G., Shaw, J., Fisher, L., Fong, S. W., & Duxson, M. J. (2010). Investigation of neuromuscular abnormalities in neurotrophin-3-deficient mice. The European Journal of Neuroscience, 31(1), 29–41. https://doi.org/10.1111/j.1460-9568.2009.07032.x

    Article  PubMed  Google Scholar 

  • Shemer, J., Raizada, M. K., Masters, B. A., Ota, A., & LeRoith, D. (1987). Insulin-like growth factor I receptors in neuronal and glial cells. Characterization and biological effects in primary culture. The Journal of Biological Chemistry, 262(16), 7693–7699.

    CAS  PubMed  Google Scholar 

  • Shibuya, K., Misawa, S., Kimura, H., Noto, Y.-I., Sato, Y., Sekiguchi, Y., … Watanabe, K. (2015). A single blind randomized controlled clinical trial of mexiletine in amyotrophic lateral sclerosis: Efficacy and safety of sodium channel blocker phase II trial. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16(5–6), 353–358.

    CAS  PubMed  Google Scholar 

  • Simon, C. M., Jablonka, S., Ruiz, R., Tabares, L., & Sendtner, M. (2010). Ciliary neurotrophic factor-induced sprouting preserves motor function in a mouse model of mild spinal muscular atrophy. Human Molecular Genetics, 19(6), 973–986. https://doi.org/10.1093/hmg/ddp562

    Article  CAS  PubMed  Google Scholar 

  • Sondell, M., Sundler, F., & Kanje, M. (2000). Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. The European Journal of Neuroscience, 12(12), 4243–4254.

    CAS  PubMed  Google Scholar 

  • Sorenson, E. J., Windbank, A. J., Mandrekar, J. N., Bamlet, W. R., Appel, S. H., Armon, C., … Thornton, C. A. (2008). Subcutaneous IGF-1 is not beneficial in 2-year ALS trial. Neurology, 71(22), 1770–1775. https://doi.org/10.1212/01.wnl.0000335970.78664.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson, A., Yates, D. M., Manser, C., De Vos, K. J., Vagnoni, A., Leigh, P. N., … Miller, C. C. J. (2009). Riluzole protects against glutamate-induced slowing of neurofilament axonal transport. Neuroscience Letters, 454(2), 161–164. https://doi.org/10.1016/j.neulet.2009.02.061

    Article  CAS  PubMed  Google Scholar 

  • Storkebaum, E., Lambrechts, D., Dewerchin, M., Moreno-Murciano, M., Appelmans, S., Oh, H., … Carmeliet, P. (2005). Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nature Neuroscience, 8(1), 85–92.

    CAS  PubMed  Google Scholar 

  • Sufit, R. L., Ajroud-Driss, S., Casey, P., & Kessler, J. A. (2017). Open label study to assess the safety of VM202 in subjects with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 18(3–4), 269–278.

    CAS  PubMed  Google Scholar 

  • Suzuki, M., Mchugh, J., Tork, C., Shelley, B., Hayes, A., Bellantuono, I., … Svendsen, C. N. (2008). Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Molecular Therapy, 16(12), 2002–2010. https://doi.org/10.1038/mt.2008.197

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, M., Mchugh, J., Tork, C., Shelley, B., Klein, S. M., Aebischer, P., & Svendsen, C. N. (2007a). GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One, 2(1), e689. https://doi.org/10.1371/journal.pone.0000689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, M., McHugh, J., Tork, C., Shelley, B., Klein, S. M., Aebischer, P., & Svendsen, C. N. (2007b). GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One, 2(8), e689.

    PubMed  PubMed Central  Google Scholar 

  • Suzuki, M., & Svendsen, C. N. (2016). Ex vivo gene therapy using human mesenchymal stem cells to deliver growth factors in the skeletal muscle of a familial ALS rat model. Methods in Molecular Biology, 1382, 325–336. https://doi.org/10.1007/978-1-4939-3271-9_24

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, S., Fujiwara, N., Ido, A., Oono, M., Takeuchi, Y., Tateno, M., … Urushitani, M. (2010). Induction of protective immunity by vaccination with wild-type apo superoxide dismutase 1 in mutant SOD1 transgenic mice. The Journal of Neuropathology & Experimental Neurology, 69(10), 1044–1056. https://doi.org/10.1097/NEN.0b013e3181f4a90a

    Article  CAS  Google Scholar 

  • Tatsumi, R., Sankoda, Y., Anderson, J. E., Sato, Y., Mizunoya, W., Shimizu, N., … Allen, R. E. (2009). Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation. American Journal of Physiology. Cell Physiology, 297(2), C238–C252. 00161.2009 [pii]. https://doi.org/10.1152/ajpcell.00161.2009

    Article  CAS  PubMed  Google Scholar 

  • Taylor, J. P., Brown, R. H., & Cleveland, D. W. (2016). Decoding ALS: From genes to mechanism. Nature, 539(7628), 197–206.

    PubMed  PubMed Central  Google Scholar 

  • Terashima, T., Kobashi, S., Watanabe, Y., Nakanishi, M., Honda, N., Katagi, M., … Kojima, H. (2020). Enhancing the therapeutic efficacy of bone marrow-derived mononuclear cells with growth factor-expressing mesenchymal stem cells for ALS in mice. IScience, 23(11), 101764.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thau, N., Jungnickel, J., Knippenberg, S., Ratzka, A., Dengler, R., Petri, S., & Grothe, C. (2012). Prolonged survival and milder impairment of motor function in the SOD1 ALS mouse model devoid of fibroblast growth factor 2. Neurobiology of Disease, 47(2), 248–257. https://doi.org/10.1016/j.nbd.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  • Tolosa, L., Mir, M., Asensio, V. J., Olmos, G., & Lladó, J. (2008). Vascular endothelial growth factor protects spinal cord motoneurons against glutamate-induced excitotoxicity via phosphatidylinositol 3-kinase. Journal of Neurochemistry, 105(4), 1080–1090. https://doi.org/10.1111/j.1471-4159.2007.05206.x

    Article  CAS  PubMed  Google Scholar 

  • Tortarolo, M., Veglianese, P., Calvaresi, N., Botturi, A., Rossi, C., Giorgini, A., … Bendotti, C. (2003). Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression. Molecular and Cellular Neuroscience, 23(2), 180–192.

    CAS  PubMed  Google Scholar 

  • Turner, B., & Talbot, K. (2008). Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Progress in Neurobiology, 85(1), 94–134.

    CAS  PubMed  Google Scholar 

  • Upton-Rice, M. N., Cudkowicz, M. E., Warren, L., Mathew, R. K., Ren, J. M., Finklestein, S. P., & Brown, R. H., Jr. (1999). Basic fibroblast growth factor does not prolong survival in a transgenic model of familial amyotrophic lateral sclerosis. Annals of Neurology, 46(6), 934.

    CAS  PubMed  Google Scholar 

  • Van Damme, P., Tilkin, P., Mercer, K. J., Terryn, J., D’Hondt, A., Herne, N., … Zachrisson, O. (2020). Intracerebroventricular delivery of vascular endothelial growth factor in patients with amyotrophic lateral sclerosis, a phase I study. Brain Communications, 2(2), fcaa160.

    PubMed  PubMed Central  Google Scholar 

  • Volonté, C., Morello, G., Spampinato, A. G., Amadio, S., Apolloni, S., D’Agata, V., & Cavallaro, S. (2020). Omics-based exploration and functional validation of neurotrophic factors and histamine as therapeutic targets in ALS. Ageing Research Reviews, 101121.

    Google Scholar 

  • Wainger, B. J., Macklin, E. A., Vucic, S., McIlduff, C. E., Paganoni, S., Maragakis, N. J., … Lange, D. J. (2021). Effect of ezogabine on cortical and spinal motor neuron excitability in amyotrophic lateral sclerosis: A randomized clinical trial. JAMA Neurology, 78(2), 186–196.

    PubMed  Google Scholar 

  • Wang, J., Hu, W., Feng, Z., & Feng, M. (2021). BDNF-overexpressing human umbilical cord mesenchymal stem cell-derived motor neurons improve motor function and prolong survival in amyotrophic lateral sclerosis mice. Neurological Research, 43(3), 199–209.

    CAS  PubMed  Google Scholar 

  • Wang, L., Gutmann, D. H., & Roos, R. P. (2011). Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Human Molecular Genetics, 20(2), 286–293.

    CAS  PubMed  Google Scholar 

  • Wang, W., Merrill, M. J., & Borchardt, R. T. (1996). Vascular endothelial growth factor affects permeability of brain microvessel endothelial cells in vitro. The American Journal of Physiology, 271(6 Pt 1), C1973–C1980.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Liu, Y., Zhai, J., Duan, W., Sun, S., Cui, H., … Liu, Y. (2018). scAAV9-VEGF-165 inhibits neuroinflammatory responses and invasion of macrophages into the peripheral nervous system of ALS transgenic mice. Brain Research Bulletin, 140, 233–242.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Ou Mao, X., Xie, L., Banwait, S., Marti, H. H., Greenberg, D. A., & Jin, K. (2007). Vascular endothelial growth factor overexpression delays neurodegeneration and prolongs survival in amyotrophic lateral sclerosis mice. Journal of Neuroscience, 27(2), 304–307. https://doi.org/10.1523/JNEUROSCI.4433-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Warita, H., Kato, M., Asada, R., Yamashita, A., Hayata, D., Adachi, K., & Aoki, M. (2019). Safety, tolerability, and pharmacodynamics of intrathecal injection of recombinant human HGF (KP-100) in subjects with amyotrophic lateral sclerosis: A phase I trial. The Journal of Clinical Pharmacology, 59(5), 677–687. https://doi.org/10.1002/jcph.1355

    Article  CAS  PubMed  Google Scholar 

  • Wegorzewska, I., Bell, S., Cairns, N. J., Miller, T. M., & Baloh, R. H. (2009). TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proceedings of the National Academy of Sciences, 106(44), 18809–18814.

    CAS  Google Scholar 

  • Weiss, J., & Levy, S. (2016). Neurologic stem cell treatment study (NEST) using bone marrow derived stem cells for the treatment of neurological disorders and injuries: Study protocol for a nonrandomized efficacy trial. Clinical Trials in Degenerative Diseases, 1(4), 176–180. https://doi.org/10.4103/2468-5658.196984

    Article  Google Scholar 

  • Weiss, M., Simmons, Z., Atassi, N., Graves, M., Parziale, N., Salameh, J., … Trivedi, J. (2015). A phase 2 study of mexiletine in sporadic amyotrophic lateral sclerosis (S50.004). Neurology, 84. AAN Enterprises.

    Google Scholar 

  • Wilczak, N., de Vos, R. A. I., & De Keyser, J. (2003). Free insulin-like growth factor (IGF)-I and IGF binding proteins 2, 5, and 6 in spinal motor neurons in amyotrophic lateral sclerosis. Lancet, 361(9362), 1007–1011. https://doi.org/10.1016/S0140-6736(03)12828-0

    Article  CAS  PubMed  Google Scholar 

  • Wong, V., Glass, D. J., Arriaga, R., Yancopoulos, G. D., Lindsay, R. M., & Conn, G. (1997). Hepatocyte growth factor promotes motor neuron survival and synergizes with ciliary neurotrophic factor. The Journal of Biological Chemistry, 272(8), 5187–5191.

    CAS  PubMed  Google Scholar 

  • Woolley, A. G., Sheard, P. W., & Duxson, M. J. (2005). Neurotrophin-3 null mutant mice display a postnatal motor neuropathy. The European Journal of Neuroscience, 21(8), 2100–2110. https://doi.org/10.1111/j.1460-9568.2005.04052.x

    Article  PubMed  Google Scholar 

  • Wu, F. T. H., Stefanini, M. O., Mac Gabhann, F., & Popel, A. S. (2009). A compartment model of VEGF distribution in humans in the presence of soluble VEGF receptor-1 acting as a ligand trap. PLoS One, 4(4), e5108. https://doi.org/10.1371/journal.pone.0005108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, L., Ryugo, D. K., Pongstaporn, T., Johe, K., & Koliatsos, V. E. (2009). Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: Differentiation and structural integration into the segmental motor circuitry. The Journal of Comparative Neurology, 514(4), 297–309. https://doi.org/10.1002/cne.22022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, L., Shen, P., Hazel, T., Johe, K., & Koliatsos, V. E. (2011). Dual transplantation of human neural stem cells into cervical and lumbar cord ameliorates motor neuron disease in SOD1 transgenic rats. Neuroscience Letters, 494(3), 222–226. https://doi.org/10.1016/j.neulet.2011.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, J., Xu, L., Welsh, A. M., Chen, D., Hazel, T., Johe, K., & Koliatsos, V. E. (2006). Combined immunosuppressive agents or CD4 antibodies prolong survival of human neural stem cell grafts and improve disease outcomes in amyotrophic lateral sclerosis transgenic mice. Stem Cells (Dayton, Ohio), 24(8), 1976–1985. https://doi.org/10.1634/stemcells.2005-0518

    Article  CAS  Google Scholar 

  • Yan, Q., Elliott, J., & Snider, W. D. (1992). Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature, 360(6406), 753–755. https://doi.org/10.1038/360753a0

    Article  CAS  PubMed  Google Scholar 

  • Yanpallewar, S. U., Barrick, C. A., Buckley, H., Becker, J., & Tessarollo, L. (2012). Deletion of the BDNF truncated receptor TrkB.T1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. PloS One, 7(6), e39946. https://doi.org/10.1371/journal.pone.0039946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., Tu, P., Abtahian, F., Trojanowski, J. Q., & Lee, V. M. (1997). Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. The Journal of Cell Biology, 139(5), 1307–1315.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., & Pardridge, W. M. (2009). Near complete rescue of experimental Parkinson’s disease with intravenous, non-viral GDNF gene therapy. Pharmaceutical Research, 26(5), 1059–1063. https://doi.org/10.1007/s11095-008-9815-9

    Article  CAS  PubMed  Google Scholar 

  • Zheng, C., Nennesmo, I., Fadeel, B., & Henter, J. (2004). Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Annals of Neurology, 56(4), 564–567.

    CAS  PubMed  Google Scholar 

  • Zheng, C., Sköld, M. K., Li, J., Nennesmo, I., Fadeel, B., & Henter, J.-I. (2007). VEGF reduces astrogliosis and preserves neuromuscular junctions in ALS transgenic mice. Biochemical and Biophysical Research Communications, 363(4), 989–993. https://doi.org/10.1016/j.bbrc.2007.09.088

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Q., Lehmer, C., Michaelsen, M., Mori, K., Alterauge, D., Baumjohann, D., … Edbauer, D. (2017). Antibodies inhibit transmission and aggregation of C9orf72 poly-GA dipeptide repeat proteins. EMBO Molecular Medicine, 9(5), 687–702. https://doi.org/10.15252/emmm.201607054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, S., Stavrovskaya, I. G., Drozda, M., Kim, B. Y. S., Ona, V., Li, M., … Friedlander, R. M. (2002). Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature, 417(6884), 74–78. https://doi.org/10.1038/417074a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding from the Motor Neuron Disease Research Institute of Australia supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary-Louise Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dubowsky, M., Shepheard, S.R., Rogers, ML. (2022). Neurotrophic Therapy for ALS/MND. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics