Skip to main content

Mercury’s Neurotoxic Effects on Brain Selenoenzymes

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity
  • 40 Accesses

Abstract

Toxic mercury (Hg) exposures inhibit selenium (Se)-dependent enzymes (selenoenzymes) required in the brain. Selenocysteine (Sec), the 21st genetically encoded amino acid, is the most powerful intracellular nucleophile, making it vulnerable to electrophiles such as Hg. The human genome includes 25 genes which express selenoenzymes with essential functions that control cellular redox status, thyroid hormone and calcium-dependent processes, immune responses, and other vital processes. Methyl-Hg (CH3Hg) binds to cysteine (Cys) to form the CH3Hg-Cys adducts which predominate in tissues. Due to molecular similarities between methionine (Met) and CH3Hg-Cys, cellular membrane transporters actively mobilize this species across membranes and into proteins. Because many selenoenzymes directly act upon or work in concert with thiomolecules, the CH3Hg-Cys in these molecules function as a suicide substrate that brings Hg into direct contact with the selenoenzyme’s active site Sec. Since Hg’s affinity for Se is far higher than its affinity for sulfur, CH3Hg exchanges partners to form CH3Hg-Sec, irreversibly inhibiting the enzyme and subsequently forming insoluble HgSe. Exposures to CH3Hg can impair Se availability in maternal, placental, and fetal tissues, but provided tissue reservoirs and intakes of Se are sufficient to ensure Sec synthesis proceeds without hindrance, the oxidative damage and other pathological consequences of high exposures are averted. Exposure to toxic amounts of Hg overcome the ability of these sources to offset Se losses. Mercury toxicity’s biochemical mechanisms, Se-dependent protective effects, variability in dose effects, prolonged latency, tissue specificity, and enhanced fetal vulnerability to high exposures are becoming increasingly well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AP-1:

Activator protein 1

ApoER2:

Apolipoprotein E receptor 2

CH3Hg:

Methylmercury

CH3HgCH3:

Dimethylmercury

Cys:

Cysteine

DIO:

Deiodinase

DIO1:

Iodothyronine deiodinase 1

GPx:

Glutathione peroxidase

GSH:

Glutathione

GSSH:

Glutathione (oxidized form)

H2O2:

Hydrogen peroxide

Hg+:

Oxidized mercury

Hg+, Hg2+:

Inorganic mercury

Hg0:

Elemental mercury

HSe:

Selenide

LAT1:

Large neutral amino acid transporter

Met:

Methionine

MsrB:

Methionine sulfoxide reductase B

NF-κB:

Nuclear factor kappa light-chain enhancer of activated B cells

OOH:

Hydroperoxo species

Prx:

Peroxyredoxins

RNR:

Ribonucleotide reductase

ROO.:

Peroxyl radical

RSe:

Selenoate

RSH:

Sulfhydryl

Sec:

Selenocysteine

SeMet:

Selenomethionine

SeO3:

Selenium trioxide

SeO32−:

Selenite

SeO42−:

Selenate

Ser:

Serine

TGR:

Thioredoxin-glutathione reductase

Trx-(SH)2:

Thioredoxin

TRx1:

Thioredoxin reductase 1

TRx2:

Thioredoxin reductase 2

References

  • Ackerman, S. (1992). Chapter 6: The development and shaping of the Brain. In Discovering the Brain. National Academies Press (US).

    Google Scholar 

  • Anestål, K., & Arnér, E. S. J. (2003). Rapid induction of cell death by selenium-compromised thioredoxin reductase 1 but not by the fully active enzyme containing selenocysteine. Journal of Biological Chemistry, 278(18), 15966–15972.

    Article  CAS  Google Scholar 

  • Arnér, E. S. J. (2009). Focus on mammalian thioredoxin reductases – Important selenoproteins with versatile functions. Biochimica et Biophysica Acta – General Subjects, 1790, 495–526.

    Article  CAS  Google Scholar 

  • Arnold, A. P., Tan, K. S., & Rabenstein, D. L. (1986). Nuclear magnetic resonance studies of the solution chemistry of metal complexes. 23. Complexation of methylmercury by selenohydryl-containing amino acids and related molecules. Inorganic Chemistry, 25(14), 2433–2437.

    Article  CAS  Google Scholar 

  • Behne, D., Pfeifer, H., Rothlein, D., & Kyriakopoulos, A. (2000). Cellular and subcellular distribution of selenium and selenium-containing proteins in the rat. In A. M. Roussel, A. E. Favier, & R. A. Anderson (Eds.), Trace elements in man and animals (Vol. 10, pp. 29–34). Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Bélanger, M., Allaman, I., & Magistretti, P. J. (2011). Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metabolism, 14, 724–738.

    Article  PubMed  CAS  Google Scholar 

  • Berry, M. J., Tujebajeva, R. M., Copeland, P. R., Xu, X. M., Carlson, B. A., Martin, G. W., III, Low, S. C., Mansell, J. B., Grundner-Culemann, E., Harney, J. W., Driscoll, D. M., & Hatfield, D. L. (2001). Selenocysteine incorporation directed from the 3’UTR: Characterization of eukaryotic EFsec and mechanistic implications. BioFactors, 14(1–4), 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Branco, V., Santos, A. G., Rodrigues, J., Gonçalves, J., Lu, J., Holmgren, A., & Carvalho, C. (2014). Mitochondrial thioredoxin reductase inhibition, selenium status and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radical Biology and Medicine, 73, 95–105.

    Article  CAS  PubMed  Google Scholar 

  • Branco, V., Coppo, L., Solá, S., Rodrigues, C., Lu, J., Holmgren, A., & Carvalho, C. (2017). Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury. Redox Biology, 13, 278–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges, C. C., & Zalups, R. K. (2005). Molecular and ionic mimicry and the transport of toxic metals. Toxicology and Applied Pharmacology, 204, 274–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budtz-Jørgensen, E., Grandjean, P., & Weihe, P. (2007). Separation of risks and benefits of seafood intake. Environmental Health Perspectives, 115(3), 323–327.

    Article  PubMed  CAS  Google Scholar 

  • Burk, R. F., & Hill, K. E. (2005). Selenoprotein P: An extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annual Review of Nutrition, 25, 215–235.

    Article  CAS  PubMed  Google Scholar 

  • Burk, R. F., Hill, K. E., Motley, A. K., Winfrey, V. P., Kurokawa, S., Mitchell, S. L., & Zhang, M. (2014). Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB Journal, 28, 3579–3588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho, C. M., Lu, J., Zhang, X., Arnér, E. S. J., & Holmgren, A. (2011). Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: Implications for treatment of mercury poisoning. FASEB Journal, 25(1), 370–381.

    Article  CAS  PubMed  Google Scholar 

  • Castoldi, A. F., Coccini, T., & Manzo, L. (2003). Neurotoxic and molecular effects of methylmercury in humans. Reviews on Environmental Health, 18(1), 19–31.

    Article  PubMed  Google Scholar 

  • Chen, J., & Berry, M. J. (2003). Selenium and selenoproteins in the brain and brain diseases. Journal of Neurochemistry, 86, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36, 608–662.

    Article  CAS  Google Scholar 

  • Dietary Guidelines Advisory Committee. (2020). Scientific Report of the 2020 Dietary Guidelines Advisory Committee. https://www.dietaryguidelines.gov/2020-advisory-committee-report

  • Dyrssen, D., & Wedborg, M. (1991). The sulfur-mercury (II) system in natural waters. Water, Air, and Soil Pollution, 56, 507–519.

    Article  Google Scholar 

  • Falnoga, I., Tušek-Žnidarič, M., & Stegnar, P. (2006). The influence of long-term mercury exposure on selenium availability in tissues: An evaluation of data. Biometals, 19(3), 283–294.

    Article  CAS  PubMed  Google Scholar 

  • Freidman, M. A., Eaton, L. R., & Carter, W. H. (1978). Protective effects of freeze-dried swordfish on methylmercury content. Bulletin of Environmental Contamination and Toxicology, 19, 436–443.

    Article  Google Scholar 

  • Ganther, H., Goudie, C., Sunde, M., Kopeckey, M., Wagner, S., & Hoekstra, W. (1972). Selenium: Relation to decreased toxicity of methylmercury added to diets containing tuna. Science, 175, 1122–1124.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, R. E., Roth, D., & Winther, J. R. (2009). Quantifying the global cellular thiol-disulfide status. Proceedings of the National Academy of Science, 106, 422–427.

    Article  CAS  Google Scholar 

  • Hatfield, D. L., & Gladyshev, V. N. (2002). How selenium has altered our understanding of the genetic code. Molecular and Cell Biology, 22(11), 3565–3576.

    Article  CAS  Google Scholar 

  • Hibbeln, J. R., Spiller, P., Brenna, J. T., Golding, J., Holub, B. J., & Harris, W. S. (2019). Relationships between seafood consumption during pregnancy and childhood and neurocognitive development: Two systematic reviews. Prostaglandins, Leukotrienes and Essential Fatty Acids, 151, 14–36.

    Article  CAS  Google Scholar 

  • Köhrle, J., & Gartner, R. (2009). Selenium and thyroid. Best Practice & Research Clinical Endocrinology & Metabolism, 23, 815–827.

    Article  CAS  Google Scholar 

  • Korbas, M., O’Donoghue, J. L., Watson, G. E., Pickering, I. J., Singh, S. P., Myers, G. J., Clarkson, T. W., & George, G. N. (2010). The chemical nature of mercury in human brain following poisoning or environmental exposure. ACS Chemical Neuroscience, 1(12), 810–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Research Council. (2000). Committee on the toxicological effects of methylmercury. In Toxicological effects of methylmercury. National Academies Press.

    Google Scholar 

  • Pařízek, J., & Oštádalová, I. (1967). The protective effect of small amounts of selenite in sublimate intoxication. Experientia, 23(2), 142–143.

    Article  PubMed  Google Scholar 

  • Pařízek, J., Oštádalová, I., Kalousková, J., Babický, A., Pavlík, L., & Bíbr, B. (1971). Effect of mercuric compounds on the maternal transmission of selenium in the pregnant and lactating rat. Journal of Reproduction and Fertility, 25, 157–170.

    Article  PubMed  Google Scholar 

  • Pitts, M. W., Raman, A. V., Hashimoto, A. C., Todorovic, C., Nichols, R. A., & Berry, M. J. (2012). Deletion of selenoprotein P results in impaired function of parvalbumin interneurons and alterations in fear learning and sensorimotor gating. Neuroscience, 208, 58–68.

    Article  CAS  PubMed  Google Scholar 

  • Prohaska, J. R., & Ganther, H. E. (1977). Interactions between selenium and methylmercury in rat brain. Chemico-Biological Interactions, 16(2), 155–167.

    Article  CAS  PubMed  Google Scholar 

  • Rabenstein, D. L., Backs, S. J., & Isab, A. A. (1981). Nuclear magnetic resonance studies of the complexation of trimethyllead by glutathione in aqueous solution and in intact human erythrocytes. Journal of the American Chemical Society, 103(10), 2836–2841.

    Article  CAS  Google Scholar 

  • Ralston, N. V. C. (2018). Effects of soft electrophiles on selenium physiology. Free Radical Biology and Medicine, 127, 134–144.

    Article  CAS  PubMed  Google Scholar 

  • Ralston, N. V. C., & Raymond, L. J. (2015). Functional deletion of brain selenoenzymes by methylmercury. In G. S. Banuelos & Z.-Q. Lin (Eds.), Selenium in the environment and human health. CRC Press, Taylor and Francis Group.

    Google Scholar 

  • Ralston, N. V. C., & Raymond, L. J. (2018). Mercury’s neurotoxicity is characterized by its disruption of selenium biochemistry. Biochimica et Biophysica Acta, General Subjects, 1862, 2405–2416.

    Article  CAS  PubMed  Google Scholar 

  • Ralston, N. V. C., Ralston, C. R., Blackwell, J. L., III, & Raymond, L. J. (2008). Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology, 29(5), 802–811.

    Article  CAS  PubMed  Google Scholar 

  • Ralston, N. V. C., Azenkeng, A., Ralston, C. R., & Raymond, L. J. (2015). Selenium health benefit values as seafood safety criteria. In S.-K. Kim (Ed.), Seafood science: Advances in chemistry, technology and applications (pp. 433–457). CRC Press.

    Google Scholar 

  • Ralston, N. V. C., Kaneko, J. J., & Raymond, L. J. (2019). Selenium health benefit values: A more reliable index of seafood benefits vs. risks. Journal of Trace Elements in Biology and Medicine, 55, 50–57.

    Article  CAS  Google Scholar 

  • Raman, A. V., Pitts, M. W., Seyedali, A., Hashimoto, A. C., Seale, L. A., Bellinger, F. P., & Berry, M. J. (2012). Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction. Genes, Brain and Behavior, 11(5), 601–613.

    Article  CAS  Google Scholar 

  • Reeves, M. A., & Hoffmann, P. R. (2009). The human selenoproteome: Recent insights into functions and regulation. Cellular and Molecular Life Sciences, 66(15), 2457–2478.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, J., Branco, V., Lu, J., Holmgren, A., & Carvalho, C. (2015). Toxicological effects of thiomersal and ethylmercury: Inhibition on thioredoxin system and NADP+-dependent dehydrogenases of the pentose phosphate pathway. Toxicology and Applied Pharmacology, 286, 216–223.

    Article  CAS  PubMed  Google Scholar 

  • Seppänen, K., Soininen, P., Salonen, J. T., Lotjonen, S., & Laatikainen, R. (2004). Does mercury promote lipid peroxidation? An in vitro study concerning mercury, copper, and iron in peroxidation of low-density lipoprotein. Biological Trace Element Research, 101, 117–132.

    Article  PubMed  Google Scholar 

  • Spiller, H. A. (2017). Rethinking mercury: The role of selenium in the pathophysiology of mercury toxicity. Clinical Toxicology, 10, 1–14.

    Google Scholar 

  • Spiller, H. A., Hays, H. L., Burns, G., & Casavant, M. J. (2017). Severe elemental mercury poisoning managed with selenium and N-acetylcysteine administration. Toxicology Communications, 1(1), 24–28.

    Article  Google Scholar 

  • Stringari, J., Nunes, A. K. C., Franco, J. L., Bohrer, D., Garcia, S. C., Dafre, A. L., Milatovic, D., Souza, D. O., Rocha, J. B. T., Aschner, M., & Farina, M. (2008). Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicology and Applied Pharmacology, 227, 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Trasande, L., Landrigan, P. J., & Schechter, C. (2005). Public health and economic consequences of methyl mercury toxicity to the developing brain. Environmental Health Perspectives, 113(5), 590–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., & Michaelis, E. K. (2010). Selective neuronal vulnerability to oxidative stress in the brain. Frontiers in Aging Neuroscience, 2(12), 1–13.

    Google Scholar 

  • Watanabe, C., Yin, K., Kasanuma, Y., & Satoh, H. (1999). In utero exposure to methylmercury and Se deficiency converge on the neurobehavioral outcome in mice. Neurotoxicology and Teratology, 21(1), 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Zhou, Y., Schweizer, U., Savaskan, N. E., Hua, D., Kipnis, J., Hatfield, D. L., & Gladyshev, V. N. (2008). Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. Journal of Biological Chemistry, 283(4), 2427–2438.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas V. C. Ralston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ralston, N.V.C. (2021). Mercury’s Neurotoxic Effects on Brain Selenoenzymes. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_236-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_236-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics