Skip to main content

Dopamine Receptor Supersensitivity and Schizophrenia

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Despite decades of clinical and preclinical research, the etiopathology of schizophrenia remains unknown. One of the most long-standing theories suggests dysregulation of the dopamine system is responsible for the development and progression of the disorder. Findings from postmortem brains of schizophrenia patients and preclinical animal studies have found dopamine receptor supersensitivity, particularly of the dopamine D2 (DAD2) receptor subtype, to be a consistent biomarker, lending strength to the dopamine hypothesis. DAD2 supersensitivity results in an enhanced response to both endogenous and exogenous dopamine, behaviorally manifesting in symptoms of psychoses and increased locomotor activity in response to drugs such as amphetamine in humans and rodents, respectively. Though the biological mechanisms underlying DAD2 receptor supersensitivity remain largely unknown, changes in both G-protein-dependent and G-protein-independent pathways are affected, and proteins involved in both pathways are suggested to participate in the development of supersensitivity. The DAD2 receptor is critically important for the treatment of schizophrenia, as blockade of this receptor is a common feature of all effective antipsychotic drugs. Chronic blockade of the DAD2 receptor has been linked to additional supersensitivity in patients with schizophrenia, resulting in relapse psychosis in many patients. The DAD2 receptor is also involved in the rewarding effects of drugs of abuse. As such, supersensitization of the DAD2 receptor has implications for the commonly comorbid substance use disorder, which negatively impacts overall treatment success. DAD2 supersensitivity is therefore of interest in the development of novel pharmaceutical treatments for the disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

cAMP:

Cyclic adenosine monophosphate

D2High:

D2 receptor high-affinity state

DAD2:

Dopamine D2 receptor

DARPP-32:

cAMP regulated neuronal phosphoprotein

DSP:

Dopamine sensitivity psychosis

GDP:

Guanosine diphosphate

GPCR:

G-protein coupled receptor

GSK3β:

Glycogen synthase kinase 3 beta

GTP:

Guanosine triphosphate

AKT:

Protein kinase B

PKA:

Protein kinase A

PP1:

Protein phosphatase 1

PP2A:

Protein phosphatase 2

RGS9:

Regulator of G-protein signaling 9

TAAR-1:

Trace amine-associated receptor 1

βA2:

β-Arrestin-2

References

  • Arseneault, L., Cannon, M., Poulton, R., Murray, R., Caspi, A., & Moffitt, T. E. (2002). Cannabis use in adolescence and risk for adult psychosis: Longitudinal prospective study. BMJ, 325, 1212–1213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bardo, M. T., & Bevins, R. A. (2000). Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology, 153, 31–43.

    Article  CAS  PubMed  Google Scholar 

  • Barnes, T. R., Mutsatsa, S. H., Hutton, S. B., Watt, H. C., & Joyce, E. M. (2000). Comorbid substance use and age at onset of schizophrenia. The British Journal of Psychiatry, 188, 237–242.

    Article  Google Scholar 

  • Batel, P. (2000). Addiction and schizophrenia. European Psychiatry, 15(2), 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu, J. M., Sotnikova, T. D., Marion, S., Lefkowitz, R. J., Gainetdinov, R. R., & Caron, M. G. (2005). An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell, 122, 261–273.

    Article  CAS  PubMed  Google Scholar 

  • Boison, D., Chen, J. F., & Fredholm, B. B. (2010). Adenosine signalling and function in glial cells. Cell Death and Differentiation, 17, 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  • Bonci, A., & Hopf, F. W. (2005). The dopamine D2 receptor: New surprises from an old friend. Neuron, 47(3), 335–338.

    Article  CAS  PubMed  Google Scholar 

  • Brown, R. W., Maple, A. M., Perna, M. K., Sheppard, A. B., Cope, Z. A., & Kostrzewa, R. M. (2012). Schizophrenia and substance abuse comorbidity: Nicotine addiction and the neonatal quinpirole model. Developmental Neuroscience, 34, 140–151.

    Article  CAS  PubMed  Google Scholar 

  • Bychkov, E. R., Ahmed, M. R., Gurevich, V. V., Benovic, J. L., & Gurevich, E. V. (2011). Reduced expression of G protein-coupled receptor kinases in schizophrenia but not in schizoaffective disorder. Neurobiology of Disease, 44(2), 248–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabello, N., Gandía, J., Bertarelli, D. C., Watanabe, M., Lluís, C., Franco, R., Ferré, S., Luján, R., & Ciruela, F. (2009). Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells. Journal of Neurochemistry, 109, 1497–1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza, D. C., Abi-Saab, W. M., Madonick, S., Forselius-Bielen, K., Doersch, A., Braley, G., Gueorguieva, R., Cooper, T. B., & Krystal, J. H. (2005). Delta-9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition, psychosis, and addiction. Biological Psychiatry, 57(6), 594–608.

    Article  PubMed  CAS  Google Scholar 

  • De Vries, L., Zheng, B., Fischer, T., Elenko, E., & Farquhar, M. G. (2000). The regulator of G protein signaling family. Annual Review of Pharmacology and Toxicology, 40, 235–271.

    Article  PubMed  Google Scholar 

  • Diaz, F. J., de Leon, J., Josiassen, R. C., Cooper, T. B., & Simpson, G. M. (2005). Plasma clozapine concentration coefficients of variation in a long-term study. Schizophrenia Research, 72, 131–135.

    Article  PubMed  Google Scholar 

  • Fatemi, S. H., & Folsom, T. D. (2009). The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophrenia Bulletin, 35(3), 528–548.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferré, S., Baler, R., Bouvier, M., Caron, M. G., Devi, L. A., Durroux, T., Fuxe, K., George, S. R., Javitch, J. A., Lohse, M. J., Mackie, K., Milligan, G., Pfleger, K. D. G., Pin, J. P., Volkow, N. D., Waldhoer, M., Woods, A. S., & Franco, R. (2009). Building a new conceptual framework for receptor heteromers. Nature Chemical Biology, 5(3), 131–134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filip, M., Zaniewska, M., Frankowska, M., Wydra, K., & Fuxe, K. (2012). The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction. Current Medicinal Chemistry, 19, 317–355.

    Article  CAS  PubMed  Google Scholar 

  • Finnema, S. J., Halldin, C., Bang-Andersen, B., Gulyás, B., Bundgaard, C., Wikström, H. V., & Farde, L. (2009). Dopamine D(2/3) receptor occupancy of apomorphine in the nonhuman primate brain--a comparative PET study with [11C]raclopride and [11C]MNPA. Synapse, 63(5), 378–389. https://doi.org/10.1002/syn.20615

    Article  CAS  PubMed  Google Scholar 

  • Gainetdinov, R. R., Premont, R. T., Bohn, L. M., Lefkowitz, R. J., & Caron, M. G. (2004). Desensitization of G protein-coupled receptors and neuronal functions. Annual Review of Neuroscience, 27, 107–144.

    Article  CAS  PubMed  Google Scholar 

  • GoÅ‚embiowska, K., & Zylewska, A. (2000). Effect of adenosine kinase, adenosine deaminase and transport inhibitors on striatal dopamine and stereotypy after methamphetamine administration. Neuropharmacology, 39, 2124–2132.

    Article  PubMed  Google Scholar 

  • Graybiel, A. M. (2000). The basal ganglia. Current Biology, 10(14), R509–R511.

    Article  CAS  PubMed  Google Scholar 

  • Greengard, P. (2001). The neurobiology of slow synaptic transmission. Science, 294, 1024–1030.

    Article  CAS  PubMed  Google Scholar 

  • Harmeier, A., Obermueller, S., Meyer, C. A., Revel, F. G., Buchy, D., Chaboz, S., Dernick, G., Wettstein, J. G., Iglesias, A., Rolink, A., Bettler, B., & Hoener, M. C. (2015). Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. European Neuropsychopharmacology, 25(11), 2049–2061.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, P. J. (1999). The neuropathology of schizophrenia. Brain, 122, 593–624.

    Article  PubMed  Google Scholar 

  • Insel, T. R. (2010). Rethinking schizophrenia. Nature, 468(7321), 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, M., Spicher, K., Boulay, G., Wang, Y., & Birnbaumer, L. (2001). Most central nervous system D2 dopamine receptors are coupled to their effectors by Go. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3577–3582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konings, M., Henquet, C., Maharajh, H. D., Hutchinson, G., & van Os, J. (2008). Early exposure to cannabis and risk for psychosis in young adolescents in Trinidad. Acta Psychiatrica Scandinavica, 118, 209–213.

    Article  CAS  PubMed  Google Scholar 

  • Kostrzewa, R. M., Nowak, P., Brus, R., & Brown, R. W. (2016). Perinatal treatments with the dopamine D2-receptor agonist quinpirole produces permanent D2-receptor supersensitization: A model of schizophrenia. Neurochemical Research, 41(1–2), 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Lohr, J. B., & Flynn, K. (1992). Smoking and schizophrenia. Schizophrenia Research, 8, 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Matthysse, S., & Sugarman, J. (1978). Neurotransmitter theories of schizophrenia. In L. L. Iversen & S. H. Snyder (Eds.), Handbook of psychopharmacology. Springer.

    Google Scholar 

  • Mauri, M. C., Volonteri, L. S., De Gaspari, I. F., Colosanti, A., Brambilla, M. A., & Cerruti, L. (2006). Substance abuse in first-episode schizophrenic patients: A retrospective study. Clinical Practice and Epidemiology in Mental Health, 2, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murthy, P., Mahadevan, J., & Chand, P. K. (2019). Treatment of substance use disorders with co-occurring severe mental health disorders. Current Opinion in Psychiatry, 32(4), 293–299.

    Article  PubMed  Google Scholar 

  • Oda, Y., Kanahara, N., & Iyo, M. (2015). Alterations of dopamine D2 receptors and related receptor-interacting proteins in schizophrenia: The pivotal position of dopamine supersensitivity psychosis in treatment-resistant schizophrenia. International Journal of Molecular Sciences, 16(12), 30144–30163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, L., Vander Stichele, R., Rosseel, M. T., Berlo, J. A., De Schepper, N., & Belpaire, F. M. (1999). Effects of smoking, CYP2D6 genotype, and concomitant drug intake on the steady state plasma concentrations of haloperidol and reduced haloperidol in schizophrenic inpatients. Therapeutic Drug Monitoring, 21, 489–497.

    Article  CAS  PubMed  Google Scholar 

  • Pierce, R. C., & Kalivas, P. W. (1997). A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Research. Brain Research Reviews, 25, 192–216.

    Article  CAS  PubMed  Google Scholar 

  • Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F., & Sklar, P. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256), 748–752.

    Article  CAS  PubMed  Google Scholar 

  • Rahman, Z., Schwarz, J., Gold, S. J., Zachariou, V., Wein, M. N., Choi, K. H., Kovoor, A., Chen, C. K., DiLeone, R. J., Schwarz, S. C., Selley, D. E., Sim-Selley, L. J., Barrot, M., Luedtke, R. R., Self, D., Neve, R. L., Lester, H. A., Simon, M. I., & Nestler, E. J. (2003). RGS9 modulates dopamine signaling in the basal ganglia. Neuron, 38(6), 941–952.

    Article  CAS  PubMed  Google Scholar 

  • Redies, C., Hertel, N., & Hübner, C. A. (2012). Cadherins and neuropsychiatric disorders. Brain Research, 1470, 130–144.

    Article  CAS  PubMed  Google Scholar 

  • Sagud, M., Peles, A. M., & Pivac, N. (2019). Smoking in schizophrenia: Recent findings about an old problem. Current Opinion in Psychiatry, 32(5), 402–408.

    Article  PubMed  Google Scholar 

  • Samaha, A. N. (2014). Can antipsychotic treatment contribute to drug addiction in schizophrenia? Progress in Neuro-Psychopharmacology & Biological Psychiatry, 52, 9–16.

    Article  CAS  Google Scholar 

  • Seeman, M. V., & Seeman, P. (2014). Is schizophrenia a dopamine supersensitivity psychotic reaction? Progress in Neuro-Psychopharmacology & Biological Psychiatry, 48, 155–160.

    Article  Google Scholar 

  • Seeman, P., Ko, F., Jack, E., Greenstein, R., & Dean, B. (2007). Consistent with dopamine supersensitivity, RGS9 expression is diminished in the amphetamine-treated animal model of schizophrenia and in postmortem schizophrenia brain. Synapse, 61(5), 303–309.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J. S., & Rajagopal, S. (2016). The β-arrestins: Multifunctional regulators of G protein-coupled receptors. The Journal of Biological Chemistry, 291, 8969–8977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, T., Kanahara, N., Yamanaka, H., Takase, M., Kimura, H., Watanabe, H., & Iyo, M. (2015). Dopamine supersensitivity psychosis as a pivotal factor in treatment-resistant schizophrenia. Psychiatry Research, 227(2–3), 278–282.

    Article  CAS  PubMed  Google Scholar 

  • Urs, N. M., Snyder, J. C., Jacobsen, J. P., Peterson, S. M., & Caron, M. G. (2012). Deletion of GSK3β in D2R-expressing neurons reveals distinct roles for β-arrestin signaling in antipsychotic and lithium action. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20732–20737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urs, N. M., Gee, S. M., Pack, T. F., McCorvy, J. D., Evron, T., Snyder, J. C., Yang, X., Rodriguiz, R. M., Borrelli, E., Wetsel, W. C., Jin, J., Roth, B. L., O’Donnell, P., & Caron, M. G. (2016). Distinct cortical and striatal actions of a β-arrestin-biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties. Proceedings of the National Academy of Sciences of the United States of America, 113(50), E8178–E8186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Wieringen, J. P., Booij, J., Shalgunov, V., Elsinga, P., & Michel, M. C. (2012). Agonist high- and low-affinity states of dopamine D2 receptors: Methods of detection and clinical implications. Naunyn-Schmiedeberg’s Archives of Pharmacology, 386(2), 135–154.

    Article  PubMed  CAS  Google Scholar 

  • Volkow, N. D., & Morales, M. (2015). The brain on drugs: From reward to addiction. Cell, 162(4), 712–725.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger, A. H., Sacco, K. A., Creeden, C. L., Vessicchio, J. C., Jatlow, P. I., & George, T. P. (2007). Effects of acute abstinence, reinstatement, and mecamylamine on biochemical and behavioral measures of cigarette smoking in schizophrenia. Schizophrenia Research, 91, 217–225.

    Article  PubMed  Google Scholar 

  • Wirkner, K., Gerevich, Z., Krause, T., Günther, A., Köles, L., Schneider, D., Nörenberg, W., & Illes, P. (2004). Adenosine A2A receptor-induced inhibition of NMDA and GABAA receptor-mediated synaptic currents in a subpopulation of rat striatal neurons. Neuropharmacology, 46, 994–1007.

    Article  CAS  PubMed  Google Scholar 

  • Yin, J., Barr, A. M., Ramos-Miguel, A., & Procyshyn, R. M. (2017). Antipsychotic induced dopamine supersensitivity psychosis: A comprehensive review. Current Neuropharmacology, 15(1), 174–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell W. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Peeters, L.D., Brown, R.W. (2021). Dopamine Receptor Supersensitivity and Schizophrenia. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_224-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_224-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics