Skip to main content

Neurotoxic Cyanobacterial Toxins

Handbook of Neurotoxicity

Abstract

Cyanobacteria (commonly referred to as blue green algae) can produce over 100 known toxins (cyanotoxins). In this chapter, cyanotoxins with established and emerging neurotoxic properties are reviewed. A variety of neurotoxic mechanisms and effects have been revealed by animal and cell culture studies including protein misfolding, neuroinflammation, blood-brain barrier damage, oxidative stress as well as altered neurotransmission, and calcium and protein homeostasis. Although several cyanotoxins exhibit acute neurotoxicity, their chronic effects remain unclear. At least one cyanobacterial neurotoxin, β-N-methylamino-L-alanine, has been linked to amyotrophic lateral sclerosis and Alzheimer’s disease, however causal links between cyanotoxins and neurodegeneration are overall currently tenuous. In light of the diversity of proposed neurotoxic mechanisms, it is important to consider their potential effect(s) of cyanotoxins on the peripheral and central nervous system, especially if low level exposures are experienced over the course of months or years. Neurotoxin exposure routes as well as synergism between cyanotoxins and/or additional environmental components may also contribute to their overall toxicity and are considered here. While there are presently several potential treatments for cyanotoxin exposure, most are symptomatic. Together, a greater investment in environmental toxin monitoring as well as understanding of the biological mechanisms of cyanotoxins will be valuable in reducing any negative impacts on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

ADDA:

D-Amino acid, 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid

AEG:

Aminoethylglycine

ALS:

Amyotrophic lateral sclerosis

ATX:

Anatoxin

BAMA:

β-Amino-N-methylalanine

BBB:

Blood-brain barrier

BMAA:

β-N-Methylamino-L-alanine

CYN:

Cylindrospermopsin

DAB:

2,4-Diaminobutyric acid

HTX-s:

Homoanatoxin-a

L:

Leucine

LD50:

Lethal dose required to cause mortality in 50% of subjects

mAChRs:

Muscarinic acetylcholine receptors

MC:

Microcystins

nAChRs:

Nicotinic acetylcholine receptors

NMDA:

N-Methyl-D-aspartic acid or N-methyl-D-aspartate

NOD:

Nodularin

OATP:

Organic anion transport system

OPIDP:

Organophosphate-induced delayed polyneuropathy

PDC:

Parkinsonism dementia complex

PP:

Protein phosphatases

R:

Arginine

SOD1:

Superoxide dismutase 1

STX:

Saxitoxin

T:

Tyrosine

TDI:

Tolerable daily intake

TDP-43:

TAR DNA binding protein 43

VGSC:

Voltage-gated Na+ channels

WHO:

World Health Organization

References

  • Andrew, A. S., Caller, T. A., Tandan, R., Duell, E. J., Henegan, P. L., Field, N. C., Bradley, W. G., & Stommel, E. W. (2017). Environmental and occupational exposures and amyotrophic lateral sclerosis in New England. Neurodegenerative Diseases, 17, 110–116.

    Article  PubMed  Google Scholar 

  • Backer, L. C., Fleming, L. E., Rowan, A., Cheng, Y.-S., Benson, J., Pierce, R. H., Zaias, J., Bean, J., Bossart, G. D., Johnson, D., Quimbo, R., & Baden, D. G. (2003). Recreational exposure to aerosolized brevetoxins during Florida red tide events. Harmful Algae, 2, 19–28.

    Article  CAS  Google Scholar 

  • Backer, L. C., Carmichael, W., Kirkpatrick, B., Williams, C., Irvin, M., Zhou, Y., Johnson, T. B., Nierenberg, K., Hill, V. R., Kieszak, S. M., & Cheng, Y. S. (2008). Recreational exposure to low concentrations of microcystins during an algal bloom in a small lake. Marine Drugs, 6, 389–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backer, L. C., Mcneel, S. V., Barber, T., Kirkpatrick, B., Williams, C., Irvin, M., Zhou, Y., Johnson, T. B., Nierenberg, K., Aubel, M., Leprell, R., Chapman, A., Foss, A., Corum, S., Hill, V. R., Kieszak, S. M., & Cheng, Y. S. (2010). Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon, 55, 909–921.

    Article  CAS  PubMed  Google Scholar 

  • Banack, S. A., & Cox, P. A. (2018). Creating a simian model of Guam ALS/PDC which reflects Chamorro lifetime BMAA exposures. Neurotoxicity Research, 33, 24–32.

    Article  CAS  PubMed  Google Scholar 

  • Banack, S. A., Caller, T., Henegan, P., Haney, J., Murby, A., Metcalf, J. S., Powell, J., Cox, P. A., & Stommel, E. (2015). Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins (Basel), 7, 322–336.

    Article  CAS  Google Scholar 

  • Baptista, M. S., Vasconcelos, R. G. W., Ferreira, P. C., Almeida, C. M. R., & Vasconcelos, V. M. (2015). Assessment of the non-protein amino acid BMAA in Mediterranean mussel Mytilus galloprovincialis after feeding with estuarine cyanobacteria. Environmental Science and Pollution Research, 22, 12501–12510.

    Article  CAS  PubMed  Google Scholar 

  • Benson, J. M., Hutt, J. A., Rein, K., Boggs, S. E., Barr, E. B., & Fleming, L. E. (2005). The toxicity of microcystin LR in mice following 7 days of inhalation exposure. Toxicon, 45, 691–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman, F. W., Gerwick, W. H., & Murray, T. F. (1999). Antillatoxin and kalkitoxin, ichthyotoxins from the tropical cyanobacterium Lyngbya majuscula, induce distinct temporal patterns of NMDA receptor-mediated neurotoxicity. Toxicon, 37, 1645–1648.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein, J. A., Ghosh, D., Levin, L. S., Zheng, S., Carmichael, W., Lummus, Z., & Bernstein, I. L. (2011). Cyanobacteria: An unrecognized ubiquitous sensitizing allergen? Allergy and Asthma Proceedings, 32, 106–110.

    Article  PubMed  Google Scholar 

  • Biré, R., Bertin, T., Dom, I., Hort, V., Schmitt, C., Diogène, J., Lemée, R., De Haro, L., & Nicolas, M. (2020). First evidence of the presence of anatoxin-A in sea figs associated with human food poisonings in France. Marine Drugs, 18, 285.

    Article  PubMed Central  CAS  Google Scholar 

  • Bouaïcha, N., Miles, C. O., Beach, D. G., Labidi, Z., Djabri, A., Benayache, N. Y., & Nguyen-Quang, T. (2019). Structural diversity, characterization and toxicology of microcystins. Toxins (Basel), 11, 714.

    Article  CAS  Google Scholar 

  • Brand, L. E., Pablo, J., Compton, A., Hammerschlag, N., & Mash, D. C. (2010). Cyanobacterial blooms and the occurrence of the neurotoxin beta-N-methylamino-L-alanine (BMAA) in South Florida aquatic food webs. Harmful Algae, 9, 620–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brózman, O., Kubickova, B., Babica, P., & Laboha, P. (2020). Microcystin-LR does not Alter cell survival and intracellular signaling in human bronchial epithelial cells. Toxins (Basel), 12, 165.

    Article  CAS  Google Scholar 

  • Buratti, F. M., Manganelli, M., Vichi, S., Stefanelli, M., Scardala, S., Testai, E., & Funari, E. (2017). Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Archives of Toxicology, 91, 1049–1130.

    Article  CAS  PubMed  Google Scholar 

  • Cai, F., Liu, J., Li, C., & Wang, J. (2015). Intracellular calcium plays a critical role in the microcystin-LR-elicited neurotoxicity through PLC/IP3 pathway. International Journal of Toxicology, 34, 551–558.

    Article  CAS  PubMed  Google Scholar 

  • Caller, T. A., Doolin, J. W., Haney, J. F., Murby, A. J., West, K. G., Farrar, H. E., Ball, A., Harris, B. T., & Stommel, E. W. (2009). A cluster of amyotrophic lateral sclerosis in New Hampshire: A possible role for toxic cyanobacteria blooms. Amyotrophic Lateral Sclerosis, 10(Suppl 2), 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Caller, T. A., Chipman, J. W., Field, N. C., & Stommel, E. W. (2013). Spatial analysis of amyotrophic lateral sclerosis in Northern New England, USA, 1997–2009. Muscle & Nerve, 48, 235–241.

    Article  Google Scholar 

  • Campos, F., Alfonso, M., Vidal, L., Faro, L. R., & Durán, R. (2006). Mediation of glutamatergic receptors and nitric oxide on striatal dopamine release evoked by anatoxin-A. An in vivo microdialysis study. European Journal of Pharmacology, 548, 90–98.

    Article  CAS  PubMed  Google Scholar 

  • Campos, F., Alfonso, M., & Durán, R. (2010). In vivo modulation of alpha7 nicotinic receptors on striatal glutamate release induced by anatoxin-A. Neurochemistry International, 56, 850–855.

    Article  CAS  PubMed  Google Scholar 

  • Carmichael, W. W., Azevedo, S. M., An, J. S., Molica, R. J., Jochimsen, E. M., Lau, S., Rinehart, K. L., Shaw, G. R., & Eaglesham, G. K. (2001). Human fatalities from cyanobacteria: Chemical and biological evidence for cyanotoxins. Environmental Health Perspectives, 109, 663–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatziefthimiou, A. D., Banack, S. A., & Cox, P. A. (2021). Biocrust-produced cyanotoxins are found vertically in the desert soil profile. Neurotoxicity Research, 39, 42–48.

    Article  CAS  PubMed  Google Scholar 

  • Chernoff, N., Hill, D. J., Diggs, D. L., Faison, B. D., Francis, B. M., Lang, J. R., Larue, M. M., Le, T. T., Loftin, K. A., Lugo, J. N., Schmid, J. E., & Winnik, W. M. (2017). A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 20, 1–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen, V. G., & Khan, E. (2020). Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. Science of the Total Environment, 736, 139515.

    Article  CAS  PubMed  Google Scholar 

  • Codd, G. A., & Metcalf, J. S. (2014). Toxic and non-toxic cyanobacteria: Evolving concepts. Perspectives in Phycology, 1, 3–5.

    Article  Google Scholar 

  • Colas, S., Marie, B., Lance, E., Quiblier, C., Tricoire-Leignel, H., & Mattei, C. (2021). Anatoxin-a: Overview on a harmful cyanobacterial neurotoxin from the environmental scale to the molecular target. Environmental Research, 193, 110590.

    Article  CAS  PubMed  Google Scholar 

  • Combes, A., El Abdellaoui, S., Vial, J., Lagrange, E., & Pichon, V. (2014). Development of an analytical procedure for quantifying the underivatized neurotoxin β-N-methylamino-L-alanine in brain tissues. Analytical and Bioanalytical Chemistry, 406, 4627–4636.

    Article  CAS  PubMed  Google Scholar 

  • Corbel, S., Mougin, C., Nélieu, S., Delarue, G., & Bouaïcha, N. (2016). Evaluation of the transfer and the accumulation of microcystins in tomato (Solanum lycopersicum cultivar MicroTom) tissues using a cyanobacterial extract containing microcystins and the radiolabeled microcystin-LR ((14)C-MC-LR). Science of the Total Environment, 541, 1052–1058.

    Article  CAS  PubMed  Google Scholar 

  • Cox, P. A., Banack, S. A., & Murch, S. J. (2003). Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proceedings of the National Academy of Sciences of the United States of America, 100, 13380–13383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, P. A., Richer, R., Metcalf, J. S., Banack, S. A., Codd, G. A., & Bradley, W. G. (2009). Cyanobacteria and BMAA exposure from desert dust: A possible link to sporadic ALS among Gulf War veterans. Amyotrophic Lateral Sclerosis, 10(Suppl 2), 109–117.

    Article  CAS  PubMed  Google Scholar 

  • Cox, P. A., Davis, D. A., Mash, D. C., Metcalf, J. S., & Banack, S. A. (2016). Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proceedings of the Biological Sciences, 283, 1.

    Google Scholar 

  • Da Silva, R. C., Grötzner, S. R., Moura Costa, D. D., Garcia, J. R. E., Muelbert, J., De Magalhães, V. F., Filipak Neto, F., & De Oliveira Ribeiro, C. A. (2018). Comparative bioaccumulation and effects of purified and cellular extract of cylindrospermopsin to freshwater fish Hoplias malabaricus. Journal of Toxicology and Environmental Health. Part A, 81, 620–632.

    Article  PubMed  CAS  Google Scholar 

  • Davis, D. A., Cox, P. A., Banack, S. A., Lecusay, P. D., Garamszegi, S. P., Hagan, M. J., Powell, J. T., Metcalf, J. S., Palmour, R. M., Beierschmitt, A., Bradley, W. G., & Mash, D. C. (2020). L-serine reduces spinal cord pathology in a vervet model of preclinical ALS/MND. Journal of Neuropathology and Experimental Neurology, 79, 393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díez-Quijada Jiménez, L., Guzmán-Guillén, R., Cascajosa Lira, A., Jos, Á., & Cameán, A. M. (2020). In vitro assessment of cyanotoxins bioaccessibility in raw and cooked mussels. Food and Chemical Toxicology, 140, 111391.

    Article  PubMed  CAS  Google Scholar 

  • Drobac, D., Tokodi, N., Kiprovski, B., Malenčić, D., Važić, T., Nybom, S., Meriluoto, J., & Svirčev, Z. (2017). Microcystin accumulation and potential effects on antioxidant capacity of leaves and fruits of Capsicum annuum. Journal of Toxicology and Environmental Health. Part A, 80, 145–154.

    Article  CAS  PubMed  Google Scholar 

  • Du, X., Liu, H., Yuan, L., Wang, Y., Ma, Y., Wang, R., Chen, X., Losiewicz, M. D., Guo, H., & Zhang, H. (2019). The diversity of cyanobacterial toxins on structural characterization, distribution and identification: A systematic review. Toxins (Basel), 11(9), 530. https://doi.org/10.3390/toxins11090530.

  • Dunlop, R. A., & Carney, J. M. (2021). Mechanisms of L-serine-mediated neuroprotection include selective activation of lysosomal cathepsins B and L. Neurotoxicity Research, 39, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Dunlop, R. A., Cox, P. A., Banack, S. A., & Rodgers, K. J. (2013). The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation. PLoS One, 8, e75376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlop, R. A., Banack, S. A., Bishop, S. L., Metcalf, J. S., Murch, S. J., Davis, D. A., Stommel, E. W., Karlsson, O., Brittebo, E. B., Chatziefthimiou, A. D., Tan, V. X., Guillemin, G. G., Cox, P. A., Mash, D. C., & Bradley, W. G. (2021). Is exposure to BMAA a risk factor for neurodegenerative diseases? A response to a critical review of the BMAA hypothesis. Neurotoxicity Research, 39, 81–106.

    Article  CAS  Google Scholar 

  • Facciponte, D. N., Bough, M. W., Seidler, D., Carroll, J. L., Ashare, A., Andrew, A. S., Tsongalis, G. J., Vaickus, L. J., Henegan, P. L., Butt, T. H., & Stommel, E. W. (2018). Identifying aerosolized cyanobacteria in the human respiratory tract: A proposed mechanism for cyanotoxin-associated diseases. Science of the Total Environment, 645, 1003–1013.

    Article  CAS  PubMed  Google Scholar 

  • Falconer, I. R. (1991). Tumor promotion and liver injury caused by oral consumption of cyanobacteria. Environmental Toxicology and Water Quality, 6, 177–184.

    Article  Google Scholar 

  • Falconer, I., Bartram, J., Chorus, I., Kuiper-Goodman, T., Utkilen, H., Burch, M., & Codd, G. A. (1999). Safe levels and safe practices. In I. Chorus & J. Bartram (Eds.), Toxic cyanobacteria in water. E. & F.N. Spon.

    Google Scholar 

  • Field, N. C., Metcalf, J. S., Caller, T. A., Banack, S. A., Cox, P. A., & Stommel, E. W. (2013). Linking β-methylamino-L-alanine exposure to sporadic amyotrophic lateral sclerosis in Annapolis, MD. Toxicon, 70, 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Fiore, M., Parisio, R., Filippini, T., Mantione, V., Platania, A., Odone, A., Signorelli, C., Pietrini, V., Mandrioli, J., Teggi, S., Costanzini, S., Antonio, C., Zuccarello, P., Oliveri Conti, G., Nicoletti, A., Zappia, M., Vinceti, M., & Ferrante, M. (2020a). Living near waterbodies as a proxy of cyanobacteria exposure and risk of amyotrophic lateral sclerosis: A population based case-control study. Environmental Research, 186, 109530.

    Article  PubMed  CAS  Google Scholar 

  • Fiore, M. F., De Lima, S. T., Carmichael, W. W., Mckinnie, S. M. K., Chekan, J. R., & Moore, B. S. (2020b). Guanitoxin, re-naming a cyanobacterial organophosphate toxin. Harmful Algae, 92, 101737.

    Article  PubMed  Google Scholar 

  • Froscio, S. M., Humpage, A. R., Burcham, P. C., & Falconer, I. R. (2003). Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environmental Toxicology, 18, 243–251.

    Article  CAS  PubMed  Google Scholar 

  • Gehringer, M. M., Adler, L., Roberts, A. A., Moffitt, M. C., Mihali, T. K., Mills, T. J., Fieker, C., & Neilan, B. A. (2012). Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp. The ISME Journal, 6, 1834–1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilroy, D. J., Kauffman, K. W., Hall, R. A., Huang, X., & Chu, F. S. (2000). Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements. Environmental Health Perspectives, 108, 435–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths, D. J., & Saker, M. L. (2003). The Palm Island mystery disease 20 years on: A review of research on the cyanotoxin cylindrospermopsin. Environmental Toxicology, 18, 78–93.

    Article  CAS  PubMed  Google Scholar 

  • Guzmán-Guillén, R., Manzano, I. L., Moreno, I. M., Ortega, A. I. P., Moyano, R., Blanco, A., & Cameán, A. M. (2015). Cylindrospermopsin induces neurotoxicity in tilapia fish (Oreochromis niloticus) exposed to Aphanizomenon ovalisporum. Aquatic Toxicology, 161, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Hinojosa, M. G., Gutiérrez-Praena, D., Prieto, A. I., Guzmán-Guillén, R., Jos, A., & Cameán, A. M. (2019a). Neurotoxicity induced by microcystins and cylindrospermopsin: A review. Science of the Total Environment, 668, 547–565.

    Article  CAS  PubMed  Google Scholar 

  • Hinojosa, M. G., Prieto, A. I., Gutiérrez-Praena, D., Moreno, F. J., cameán, A. M., & Jos, A. (2019b). Neurotoxic assessment of Microcystin-LR, cylindrospermopsin and their combination on the human neuroblastoma SH-SY5Y cell line. Chemosphere, 224, 751–764.

    Article  CAS  PubMed  Google Scholar 

  • Jonasson, S., Eriksson, J., Berntzon, L., Spáčil, Z., Ilag, L. L., Ronnevi, L.-O., Rasmussen, U., & Bergman, B. (2010). Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proceedings of the National Academy of Sciences, 107, 9252–9257.

    Article  CAS  Google Scholar 

  • Kamel, F., Umbach, D. M., Bedlack, R. S., Richards, M., Watson, M., Alavanja, M. C., Blair, A., Hoppin, J. A., Schmidt, S., & Sandler, D. P. (2012). Pesticide exposure and amyotrophic lateral sclerosis. Neurotoxicology, 33, 457–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kankaanpää, H., Leiniö, S., Olin, M., Sjövall, O., Meriluoto, J., & Lehtonen, K. K. (2007). Accumulation and depuration of cyanobacterial toxin nodularin and biomarker responses in the mussel Mytilus edulis. Chemosphere, 68, 1210–1217.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, O., Roman, E., Berg, A. L., & Brittebo, E. B. (2011). Early hippocampal cell death, and late learning and memory deficits in rats exposed to the environmental toxin BMAA (β-N-methylamino-L-alanine) during the neonatal period. Behavioural Brain Research, 219, 310–320.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson, O., Berg, A. L., Lindstrom, A. K., Hanrieder, J., Arnerup, G., Roman, E., Bergquist, J., Lindquist, N. G., Brittebo, E. B., & Andersson, M. (2012). Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression and neurodegeneration in adult hippocampus. Toxicological Sciences, 130, 391–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick, B., Pierce, R., Cheng, Y. S., Henry, M. S., Blum, P., Osborn, S., Nierenberg, K., Pederson, B. A., Fleming, L. E., Reich, A., Naar, J., Kirkpatrick, G., Backer, L. C., & Baden, D. (2010). Inland transport of aerosolized Florida red tide toxins. Harmful Algae, 9, 186–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig, J. H., Goto, J. J., & Ikeda, K. (2015). Novel NMDA receptor-specific desensitization/inactivation produced by ingestion of the neurotoxins, β-N-methylamino-L-alanine (BMAA) or β-N-oxalylamino-L-alanine (BOAA/β-ODAP). Comparative Biochemistry and Physiology, Part C: Toxicology and Pharmacology, 167, 43–50.

    CAS  Google Scholar 

  • Korn, A., Höfling, C., Zeitschel, U., Krueger, M., Roßner, S., & Huster, D. (2020). Incorporation of the nonproteinogenic amino acid β-methylamino-alanine affects amyloid β fibril properties and toxicity. ACS Chemical Neuroscience, 11, 1038–1047.

    Article  CAS  PubMed  Google Scholar 

  • Kozdęba, M., Borowczyk, J., Zimoląg, E., Wasylewski, M., Dziga, D., Madeja, Z., & Drukala, J. (2014). Microcystin-LR affects properties of human epidermal skin cells crucial for regenerative processes. Toxicon, 80, 38–46.

    Article  PubMed  CAS  Google Scholar 

  • Kubickova, B., Laboha, P., Hildebrandt, J. P., Hilscherová, K., & Babica, P. (2019). Effects of cylindrospermopsin on cultured immortalized human airway epithelial cells. Chemosphere, 220, 620–628.

    Article  CAS  PubMed  Google Scholar 

  • Levine, T. D., Miller, R. G., Bradley, W. G., Moore, D. H., Saperstein, D. S., Flynn, L. E., Katz, J. S., Forshew, D. A., Metcalf, J. S., Banack, S. A., & Cox, P. A. (2017). Phase I clinical trial of safety of L-serine for ALS patients. Amyotroph Lateral Scler Frontotemporal Degener, 18, 107–111.

    Article  CAS  PubMed  Google Scholar 

  • Li, W. I., Berman, F. W., Okino, T., Yokokawa, F., Shioiri, T., Gerwick, W. H., & Murray, T. F. (2001). Antillatoxin is a marine cyanobacterial toxin that potently activates voltage-gated sodium channels. Proceedings of the National Academy of Sciences of the United States of America, 98, 7599–7604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G., Cai, F., Yan, W., Li, C., & Wang, J. (2012). A proteomic analysis of MCLR-induced neurotoxicity: Implications for Alzheimer’s disease. Toxicological Sciences, 127, 485–495.

    Article  CAS  PubMed  Google Scholar 

  • Liu, F., Grundke-Iqbal, I., Iqbal, K., & Gong, C. X. (2005). Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. The European Journal of Neuroscience, 22, 1942–1950.

    Article  PubMed  Google Scholar 

  • Liu, F., Liang, Z., & Gong, C. X. (2006). Hyperphosphorylation of tau and protein phosphatases in Alzheimer disease. Panminerva Medica, 48, 97–108.

    CAS  PubMed  Google Scholar 

  • Lobner, D. (2009). Mechanisms of beta-N-methylamino-L-alanine induced neurotoxicity. Amyotrophic Lateral Sclerosis, 10(Suppl 2), 56–60.

    Article  CAS  PubMed  Google Scholar 

  • Lotti, M., & Moretto, A. (2005). Organophosphate-induced delayed polyneuropathy. Toxicological Reviews, 24, 37–49.

    Article  CAS  PubMed  Google Scholar 

  • Machado, J., Campos, A., Vasconcelos, V., & Freitas, M. (2017). Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health. Environmental Research, 153, 191–204.

    Article  CAS  PubMed  Google Scholar 

  • Maisanaba, S., Saladino, F., Font, G., Jos, Á., Cameán, A. M., & Meca, G. (2017). Bioaccesibility of Cylindrospermopsin from cooked fish muscle after the application of an in vitro digestion model and its bioavailability. Food and Chemical Toxicology, 110, 360–370.

    Article  CAS  PubMed  Google Scholar 

  • Manolidi, K., Triantis, T. M., Kaloudis, T., & Hiskia, A. (2019). Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. Journal of Hazardous Materials, 365, 346–365.

    Article  CAS  PubMed  Google Scholar 

  • Marsan, D. W., Conrad, S. M., Stutts, W. L., Parker, C. H., & Deeds, J. R. (2018). Evaluation of microcystin contamination in blue-green algal dietary supplements using a protein phosphatase inhibition-based test kit. Heliyon, 4, e00573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, R. M., Stallrich, J., & Bereman, M. S. (2019). Mixture designs to investigate adverse effects upon co-exposure to environmental cyanotoxins. Toxicology, 421, 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Martin, R. M., Bereman, M. S., & Marsden, K. C. (2021). BMAA and MCLR interact to modulate behavior and exacerbate molecular changes related to neurodegeneration in larval zebrafish. Toxicological Sciences, 179(2), 251–261. https://doi.org/10.1093/toxsci/kfaa178.

  • Mello, F. D., Braidy, N., Marçal, H., Guillemin, G., Nabavi, S. M., & Neilan, B. A. (2018). Mechanisms and effects posed by neurotoxic products of cyanobacteria/microbial eukaryotes/dinoflagellates in algae blooms: A review. Neurotoxicity Research, 33, 153–167.

    Article  CAS  PubMed  Google Scholar 

  • Merwin, S. J., Obis, T., Nunez, Y., & Re, D. B. (2017). Organophosphate neurotoxicity to the voluntary motor system on the trail of environment-caused amyotrophic lateral sclerosis: The known, the misknown, and the unknown. Archives of Toxicology, 91, 2939–2952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalf, J. S., & Codd, G. A. (2020). Co-occurrence of cyanobacteria and cyanotoxins with other environmental health hazards: Impacts and implications. Toxins (Basel), 12(10):629.

    Google Scholar 

  • Metcalf, J. S., Banack, S. A., Lindsay, J., Morrison, L. F., Cox, P. A., & Codd, G. A. (2008). Co-occurrence of beta-N-methylamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990–2004. Environmental Microbiology, 10, 702–708.

    Article  CAS  PubMed  Google Scholar 

  • Metcalf, J. S., Richer, R., Cox, P. A., & Codd, G. A. (2012). Cyanotoxins in desert environments may present a risk to human health. Science of the Total Environment, 421–422, 118–123.

    Article  CAS  PubMed  Google Scholar 

  • Metcalf, J. S., Dunlop, R. A., Banack, S. A., Souza, N. R., & Cox, P. A. (2021). Cyanotoxin analysis and amino acid profiles of cyanobacterial food items from Chad. Neurotoxicity Research, 39(1), 72–80. https://doi.org/10.1007/s12640-020-00240-x.

  • Miller, T. R., Xiong, A., Deeds, J. R., Stutts, W. L., Samdal, I. A., Løvberg, K. E., & Miles, C. O. (2020). Microcystin toxins at potentially hazardous levels in algal dietary supplements revealed by a combination of bioassay, immunoassay, and mass spectrometric methods. Journal of Agricultural and Food Chemistry, 68, 8016–8025.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, Z. A., & Bakr, A. (2018). Concentrations of cylindrospermopsin toxin in water and tilapia fish of tropical fishponds in Egypt, and assessing their potential risk to human health. Environmental Science and Pollution Research International, 25, 36287–36297.

    Article  CAS  PubMed  Google Scholar 

  • Mondo, K., Broc Glover, W., Murch, S. J., Liu, G., Cai, Y., Davis, D. A., & Mash, D. C. (2014). Environmental neurotoxins β-N-methylamino-l-alanine (BMAA) and mercury in shark cartilage dietary supplements. Food and Chemical Toxicology, 70, 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Murby, A. L., & Haney, J. F. (2016). Field and laboratory methods to monitor lake aerosols for cyanobacteria and microcystins. Aerobiologia, 32, 395–403.

    Article  Google Scholar 

  • Murch, S. J., Cox, P. A., & Banack, S. A. (2004a). A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proceedings of the National Academy of Sciences of the United States of America, 101, 12228–12231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murch, S. J., Cox, P. A., Banack, S. A., Steele, J. C., & Sacks, O. W. (2004b). Occurrence of beta-methylamino-l-alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurologica Scandinavica, 110, 267–269.

    Article  CAS  PubMed  Google Scholar 

  • Murray, S. A., Mihali, T. K., & Neilan, B. A. (2011). Extraordinary conservation, gene loss, and positive selection in the evolution of an ancient neurotoxin. Molecular Biology and Evolution, 28, 1173–1182.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen, M. C., & Jiang, S. C. (2020). Can cyanotoxins penetrate human skin during water recreation to cause negative health effects? Harmful Algae, 98, 101872.

    Article  CAS  PubMed  Google Scholar 

  • Nishiwaki-Matsushima, R., Ohta, T., Nishiwaki, S., Suganuma, M., Kohyama, K., Ishikawa, T., Carmichael, W. W., & Fujiki, H. (1992). Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. Journal of Cancer Research and Clinical Oncology, 118, 420–424.

    Article  CAS  PubMed  Google Scholar 

  • O’Neill, K., Musgrave, I. F., & Humpage, A. (2016). Low dose extended exposure to saxitoxin and its potential neurodevelopmental effects: A review. Environmental Toxicology and Pharmacology, 48, 7–16.

    Article  PubMed  CAS  Google Scholar 

  • Okle, O., Stemmer, K., Deschl, U., & Dietrich, D. R. (2013). L-BMAA induced ER stress and enhanced caspase 12 cleavage in human neuroblastoma SH-SY5Y cells at low nonexcitotoxic concentrations. Toxicological Sciences, 131, 217–224.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen, I., Jokela, J., Fewer, D. P., Wahlsten, M., Rikkinen, J., & Sivonen, K. (2004). Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Applied and Environmental Microbiology, 70, 5756–5763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pablo, J., Banack, S. A., Cox, P. A., Johnson, T. E., Papapetropoulos, S., Bradley, W. G., Buck, A., & Mash, D. C. (2009). Cyanobacterial neurotoxin BMAA in ALS and Alzheimer’s disease. Acta Neurologica Scandinavica, 120, 216–225.

    Article  CAS  PubMed  Google Scholar 

  • Patocka, J., Gupta, R., & Kuca, K. (2011). Anatoxin-A(S): Natural organophosphorus anticholinesterase agent. Military Medical Science. Letters, 80, 129–139.

    Article  Google Scholar 

  • Pedrosa, C., Souza, L. R. Q., Gomes, T. A., De Lima, C. V. F., Ledur, P. F., Karmirian, K., Barbeito-Andres, J., Costa, M. D. N., Higa, L. M., Rossi, Á. D., Bellio, M., Tanuri, A., Prata-Barbosa, A., Tovar-Moll, F., Garcez, P. P., Lara, F. A., Molica, R. J. R., & Rehen, S. K. (2020). The cyanobacterial saxitoxin exacerbates neural cell death and brain malformations induced by Zika virus. PLoS Neglected Tropical Diseases, 14, e0008060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pierozan, P., Cattani, D., & Karlsson, O. (2020a). Hippocampal neural stem cells are more susceptible to the neurotoxin BMAA than primary neurons: Effects on apoptosis, cellular differentiation, neurite outgrowth, and DNA methylation. Cell Death & Disease, 11, 910.

    Article  CAS  Google Scholar 

  • Pierozan, P., Piras, E., Brittebo, E., & Karlsson, O. (2020b). The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) targets the olfactory bulb region. Archives of Toxicology, 94(8), 2799–2808. https://doi.org/10.1007/s00204-020-02775-6.

  • Pilotto, L., Hobson, P., Burch, M. D., Ranmuthugala, G., Attewell, R., & Weightman, W. (2004). Acute skin irritant effects of cyanobacteria (blue-green algae) in healthy volunteers. Australian and New Zealand Journal of Public Health, 28, 220–224.

    Article  PubMed  Google Scholar 

  • Pouria, S., De Andrade, A., Barbosa, J., Cavalcanti, R. L., Barreto, V. T., Ward, C. J., Preiser, W., Poon, G. K., Neild, G. H., & Codd, G. A. (1998). Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet, 352, 21–26.

    Article  CAS  PubMed  Google Scholar 

  • Proctor, E. A., Mowrey, D. D., & Dokholyan, N. V. (2019). β-Methylamino-L-alanine substitution of serine in SOD1 suggests a direct role in ALS etiology. PLoS Computational Biology, 15, e1007225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rao, Y., Li, H., Chen, M., Fu, Q., Zhuang, G., & Huang, K. (2020). Characterization of airborne microbial aerosols during a long-range transported dust event in eastern China: Bacterial community, influencing factors, and potential health effects. Aerosol and Air Quality Research, 20, 2834–2845.

    Article  CAS  Google Scholar 

  • Rauk, A. (2018). β-N-Methylamino-l-alanine (BMAA) not involved in Alzheimer’s disease. The Journal of Physical Chemistry. B, 122, 4472–4480.

    Article  CAS  PubMed  Google Scholar 

  • Restani, L., Giribaldi, F., Manich, M., Bercsenyi, K., Menendez, G., Rossetto, O., Caleo, M., & Schiavo, G. (2012). Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathogens, 8, e1003087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Runnegar, M. T., Kong, S. M., Zhong, Y. Z., Ge, J. L., & Lu, S. C. (1994). The role of glutathione in the toxicity of a novel cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochemical and Biophysical Research Communications, 201, 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Runnegar, M. T., Kong, S. M., Zhong, Y. Z., & Lu, S. C. (1995). Inhibition of reduced glutathione synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochemical Pharmacology, 49, 219–225.

    Article  CAS  PubMed  Google Scholar 

  • Rush, T., Liu, X., & Lobner, D. (2012). Synergistic toxicity of the environmental neurotoxins methylmercury and beta-N-methylamino-L-alanine. Neuroreport, 23, 216–219.

    Article  CAS  PubMed  Google Scholar 

  • Saker, M. L., Metcalf, J. S., Codd, G. A., & Vasconcelos, V. M. (2004). Accumulation and depuration of the cyanobacterial toxin cylindrospermopsin in the freshwater mussel Anodonta cygnea. Toxicon, 43, 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer, A. M., Yrastorza, L., Stockley, N., Harvey, K., Harris, N., Grady, R., Sullivan, J., Mcfarland, M., & Reif, J. S. (2020). Exposure to microcystin among coastal residents during a cyanobacteria bloom in Florida. Harmful Algae, 92, 101769.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, C., Torrents, R., Domangé, B., Simon, N., & De Haro, L. (2019). Cerebellar syndrome associated with ingestion of Mediterranean Microcosmus: A French case series. Clinical Toxicology (Philadelphia, Pa.), 57, 221–223.

    Article  Google Scholar 

  • Schneider Medeiros, M., P. Reddy, S., P. Socal, M., Schumacher-Schuh, A. F., & Mello Rieder, C. R. (2020). Occupational pesticide exposure and the risk of death in patients with Parkinson’s disease: An observational study in southern Brazil. Environmental Health, 19, 68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab, M. E., Suda, K., & Thoenen, H. (1979). Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport. The Journal of Cell Biology, 82, 798–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, L. L., Downing, S., & Downing, T. G. (2018). The evaluation of BMAA inhalation as a potential exposure route using a rat model. Neurotoxicity Research, 33, 6–14.

    Article  CAS  PubMed  Google Scholar 

  • Spoof, L., & Arnaud, C. (2016). Appendix 3: Tables of microcystins and nodularins. In Handbook of cyanobacterial monitoring and cyanotoxin analysis. John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, ISBN 978-1-119-06868-6 (978-1-119-06876-1 eBook), https://doi.org/10.1002/9781119068761.

  • Stewart, I., Robertson, I. M., Webb, P. M., Schluter, P. J., & Shaw, G. R. (2006a). Cutaneous hypersensitivity reactions to freshwater cyanobacteria – Human volunteer studies. BMC Dermatology, 6, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart, I., Seawright, A. A., Schluter, P. J., & Shaw, G. R. (2006b). Primary irritant and delayed-contact hypersensitivity reactions to the freshwater cyanobacterium Cylindrospermopsis raciborskii and its associated toxin cylindrospermopsin. BMC Dermatology, 6, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stewart, I., Webb, P. M., Schluter, P. J., Fleming, L. E., Burns, J. W., Jr., Gantar, M., Backer, L. C., & Shaw, G. R. (2006c). Epidemiology of recreational exposure to freshwater cyanobacteria – An international prospective cohort study. BMC Public Health, 6, 93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stommel, E. W., Field, N. C., & Caller, T. A. (2013). Aerosolization of cyanobacteria as a risk factor for amyotrophic lateral sclerosis. Medical Hypotheses, 80, 142–145.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland, J. W., Turcotte, R. J., Molden, E., Moriarty, V., Kelly, M., Aubel, M., & Foss, A. (2021). The detection of airborne anatoxin-a (ATX) on glass fiber filters during a harmful algal bloom. Lake and Reservoir Management, 1–9.

    Google Scholar 

  • Svirčev, Z., Lalić, D., Bojadžija Savić, G., Tokodi, N., Drobac Backović, D., Chen, L., Meriluoto, J., & Codd, G. A. (2019). Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Archives of Toxicology, 93, 2429–2481.

    Article  PubMed  CAS  Google Scholar 

  • Torbick, N., Hession, S., Stommel, E., & Caller, T. (2014). Mapping amyotrophic lateral sclerosis lake risk factors across northern New England. International Journal of Health Geographics, 13, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Torbick, N., Ziniti, B., Stommel, E., Linder, E., Andrew, A., Caller, T., Haney, J., Bradley, W., Henegan, P. L., & Shi, X. (2018). Assessing cyanobacterial harmful algal blooms as risk factors for amyotrophic lateral sclerosis. Neurotoxicity Research, 33, 199–212.

    Article  PubMed  Google Scholar 

  • Torokne, A., Palovics, A., & Bankine, M. (2001). Allergenic (sensitization, skin and eye irritation) effects of freshwater cyanobacteria – Experimental evidence. Environmental Toxicology, 16, 512–516.

    Article  CAS  PubMed  Google Scholar 

  • Turner, P. C., Gammie, A. J., Hollinrake, K., & Codd, G. A. (1990). Pneumonia associated with contact with cyanobacteria. BMJ, 300, 1440–1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uetake, J., Tobo, Y., Uji, Y., Hill, T. C. J., Demott, P. J., Kreidenweis, S. M., & Misumi, R. (2019). Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. Frontiers in Microbiology, 10, 1572.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Buynder, P. G., Oughtred, T., Kirkby, B., Phillips, S., Eaglesham, G., Thomas, K., & Burch, M. (2001). Nodularin uptake by seafood during a cyanobacterial bloom. Environmental Toxicology, 16, 468–471.

    Article  PubMed  Google Scholar 

  • Van Onselen, R., & Downing, T. G. (2018). BMAA-protein interactions: A possible new mechanism of toxicity. Toxicon, 143, 74–80.

    Article  PubMed  CAS  Google Scholar 

  • Vilariño, N., Louzao, M. C., Abal, P., Cagide, E., Carrera, C., Vieytes, M. R., & Botana, L. M. (2018). Human poisoning from marine toxins: Unknowns for optimal consumer protection. Toxins, 10, 324.

    Article  PubMed Central  CAS  Google Scholar 

  • Wang, A., Cockburn, M., Ly, T. T., Bronstein, J. M., & Ritz, B. (2014). The association between ambient exposure to organophosphates and Parkinson’s disease risk. Occupational and Environmental Medicine, 71, 275–281.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Zhang, C., Zhu, J., Ding, J., Chen, Y., & Han, X. (2019). Blood-brain barrier disruption and inflammation reaction in mice after chronic exposure to Microcystin-LR. Science of the Total Environment, 689, 662–678.

    Article  CAS  PubMed  Google Scholar 

  • Wonnacott, S., Swanson, K. L., Albuquerque, E. X., Huby, N. J., Thompson, P., & Gallagher, T. (1992). Homoanatoxin: A potent analogue of anatoxin-A. Biochemical Pharmacology, 43, 419–423.

    Article  CAS  PubMed  Google Scholar 

  • Wood, S. A., & Dietrich, D. R. (2011). Quantitative assessment of aerosolized cyanobacterial toxins at two New Zealand lakes. Journal of Environmental Monitoring, 13, 1617–1624.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization. (1998). Cyanobacterial toxins: Microcystin-LR in drinking-water. In Guidelines for drinking-water quality (2nd ed.). World Health Organization.

    Google Scholar 

  • World Health Organization. (2003). Guidelines for safe recreational water environments. World Health Organization.

    Google Scholar 

  • Yoshizawa, S., Matsushima, R., Watanabe, M. F., Harada, K., Ichihara, A., Carmichael, W. W., & Fujiki, H. (1990). Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity. Journal of Cancer Research and Clinical Oncology, 116, 609–614.

    Article  CAS  PubMed  Google Scholar 

  • Zagatto, P. A., Buratini, S. V., Aragão, M. A., & Ferrão-Filho, A. S. (2012). Neurotoxicity of two Cylindrospermopsis raciborskii (cyanobacteria) strains to mice, Daphnia, and fish. Environmental Toxicology and Chemistry, 31, 857–862.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elijah W. Stommel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tischbein, M., Stommel, E.W. (2021). Neurotoxic Cyanobacterial Toxins. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_198-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_198-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Neurotoxic Cyanobacterial Toxins
    Published:
    11 January 2022

    DOI: https://doi.org/10.1007/978-3-030-71519-9_198-2

  2. Original

    Neurotoxic Cyanobacterial Toxins
    Published:
    25 September 2021

    DOI: https://doi.org/10.1007/978-3-030-71519-9_198-1