Skip to main content

Excitotoxicity in the Pathogenesis of Autism

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Autism is a neurodevelopmental disorder characterized by stereotyped interests and behaviors, and abnormalities in verbal and nonverbal communication. Autism is reported as a multifactorial disorder resulting from interactions between genetic, environmental, and immunological factors. Excitotoxicity and oxidative stress are potential mechanisms, which are likely to serve as a converging point to these risk factors. Numerous studies suggest that excitotoxicity is a likely cause of neuronal dysfunction in autistic patients. Glutamate is the main excitatory neurotransmitter generated in the CNS, and over activation of glutamate receptors triggers excitotoxicity. Hyperactivation of glutamatergic receptors, N-methyl-d-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate (AMPA), leads to activation of enzymes, which damage cellular structure, membrane permeability, and electrochemical gradients. The role of excitotoxicity in autistic subjects is summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AMPA:

2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate

iNOS:

Inducible nitric oxide

MRI:

Magnetic resonance imaging

NMDA:

N-methyl-d-aspartate

NO•:

Nitric oxide

References

  • Babu, G. N., Bawari, M., & Ali, M. M. (1994). Lipid peroxidation potential and antioxidant status of circumventricular organs of rat brain following neonatal monosodium glutamate. Neurotoxicology, 15, 773–777.

    CAS  PubMed  Google Scholar 

  • Baron-Cohen, S., Scott, F. J., Allison, C., Williams, J., Bolton, P., Matthews, F. E., & Brayne, C. (2009). Prevalence of autism-spectrum conditions: UK school-based population study. The British Journal of Psychiatry, 194, 500–509.

    Article  Google Scholar 

  • Blaylock, R. L. (2003). The central role of excitotoxicity in autism spectrum disorders. The Journal of the American Nutraceutical Association, 6, 7–19.

    Google Scholar 

  • Chez, M. G., Burton, Q., Dowling, T., Chang, M., Khanna, P., & Kramer, C. (2007). Memantine as adjunctive therapy in children diagnosed with autistic spectrum disorders: An observation of initial clinical response and maintenance tolerability. Journal of Child Neurology, 22, 574–579.

    Article  Google Scholar 

  • Cohly, H. H., & Panja, A. (2005). Immunological findings in autism. International Review of Neurobiology, 71, 317–341.

    Article  CAS  Google Scholar 

  • Ekonomou, A., & Angelatou, F. (1999). Upregulation of NMDA receptors in hippocampus and cortex in the pentylenetetrazol-induced “kindling” model of epilepsy. Neurochemical Research, 24, 1515–1522.

    Article  CAS  Google Scholar 

  • Eliasson, M. J., Huang, Z., & Ferrante, R. J. (1999). Neuronal nitric oxide synthease activation and peroxynitrite formation in ischemic stroke linked to neural damage. The Journal of Neuroscience, 19, 59105918.

    Article  Google Scholar 

  • Espey, M. G., Kustova, Y., Sei, Y., & Basile, A. S. (1998). Extracellular glutamate levels are chronically elevated in the brains of LPBM5-infected mice: A mechanism of retrovirus-induced encephalopathy. Journal of Neurochemistry, 71, 2079–2087.

    Article  CAS  Google Scholar 

  • Farooqui, A. A., & Horrocks, L. A. (1994). Excitotoxicity and neurological disorders: Involvement of membrane phospholipids. International Review of Neurobiology, 36, 267–323.

    Article  CAS  Google Scholar 

  • Fontana, A., Constam, D., Frei, K., et al. (1996). Cytokines and defense against CNS infection. In R. M. Ransohoff & E. N. Beneviste (Eds.), Cytokines and the CNS. CRC Press. ISBN-10: 0849324521.

    Google Scholar 

  • Fosslier, E. (2001). Mitochondrial medicine-molecular pathology of defective oxidative phosphorylation. Annals of Clinical and Laboratory Science, 31, 25–67.

    Google Scholar 

  • Gillberg, C., & Coleman, M. (2000). The biology of autistic syndromes (3rd ed.). Mac Keith. (Distributed by Cambridge University Press) Mac Keith Press.

    Google Scholar 

  • Gospe, S. M., & Hecht, S. T. (1998). Longitudinal MRI findings in pyridoxine dependent seizures. Neurology, 51, 74–78.

    Article  Google Scholar 

  • Johnston, M. V. (1995). Neurotransmitters and vulnerability of the developing brain. Brain & Development, 17, 301–306.

    Article  CAS  Google Scholar 

  • Lan, J. Y., Skeberdis, V. A., Jover, T., Grooms, S. Y., Lin, Y., Araneda, R. C., et al. (2001). Protein kinase C modulates NMDA receptor trafficking and gating. Nature Neuroscience, 4, 382–390.

    Article  CAS  Google Scholar 

  • Mathern, G. W., Pretorius, J. K., Mendoza, D., et al. (1999). Hippocampal N-methyl-D-aspartate receptor subunit mRNA levels in temporal lobe epilepsy patients. Annals of Neurology, 46, 343–358.

    Article  CAS  Google Scholar 

  • Novelli, A., Reilly, J. A., Lysko, P. G., & Henneberry, R. C. (1988). Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Research, 451, 205–212.

    Article  CAS  Google Scholar 

  • Olney, J. W. (1969). Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science, 165, 719721.

    Article  Google Scholar 

  • Olney, J. W., Collias, R. C., & Sloviter, R. S. (1986). Excitotoxic mechanism of epileptic brain damage. Advances in Neurology, 44, 857–877.

    CAS  PubMed  Google Scholar 

  • Page, L. A., Daly, E., Schmitz, N., Simmons, A., Toal, F., Deeley, Q., Ambery, F., McAlonan, G. M., Murphy, K. C., & Murphy, D. G. M. (2006). In vivo 1H-magnetic resonance spectroscopy study of amygdala-hippocampal and parietal regions in autism. The American Journal of Psychiatry, 163(12), 2189–2192.

    Article  Google Scholar 

  • Rogawski, M. A. (1995). Excitatory amino acids and seizures. In T. W. Stone (Ed.), CNS neurotransmitters and neuromodulators: Glutamate (pp. 219–237). CRC Press.

    Google Scholar 

  • Saitoh, O., Karns, C. M., & Courchesne, E. (2001). Development of the hippocampal formation from 2 to 42 years: MRI evidence of smaller area cystein in autism. Brain, 124, 1317–1324.

    Article  CAS  Google Scholar 

  • Shinohe, A., Hashimoto, K., Nakamura, K., et al. (2006). Increased serum levels of glutamate in adult patients with autism. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 30, 1472–1477.

    Article  CAS  Google Scholar 

  • Zilbovicius, M., Boddaert, N., Belin, P., et al. (2000). Temporal lobe dysfunction in childhood autism: A PET study. The American Journal of Psychiatry, 157, 1988–1993.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work has been partly supported by Sultan Qaboos University Internal grant (Grant # IG/AGR/FOOD/11/02) and the Research Council; Oman (Grant # RC/AGR/FOOD/11/01). This work has been also supported by the Alzheimer’s Association (grant # IIRG- 08-89545) and by the Rebecca Cooper foundation (Australia). Dr Nady Braidy is the recipient of an Alzheimer’s Australia Viertel Foundation Postdoctoral Research Fellowship at the University of New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Braidy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Essa, M.M., Braidy, N., Subash, S., Vijayan, R.K., Guillemin, G.J. (2022). Excitotoxicity in the Pathogenesis of Autism. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_148-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_148-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics