Skip to main content

Adenovirus for Detection of Fecal Pollution in Santa Clara River, Rumiñahui - Ecuador

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2020)

Abstract

River water quality is affected by wastewater discharged and the lack of treatment plants. Contaminants include high organic loads and fecal microorganisms that may be a risk to human and animal health. Adenoviruses (AdV) are an appropriate indicator of viral contamination in water bodies due to its stability, persistence and resistance to UV light. Santa Clara River crosses Valley of the Chillos in Rumiñahui, as well as four other rivers, supporting domestic discharges, accumulation of garbage and waste. The objective of this research was to evaluate the presence of AdV as indicators of water contamination. Three water samples from Santa Clara River were taken, and molecular and bioinformatics techniques were used to identify AdV. Human AdV, serotypes 41 and 31 related to gastrointestinal diseases were found as well as porcine AdV 5, which is associated to diarrheal and respiratory diseases; and murine AdV 2, which can be asymptomatic. All these viruses are transmitted via fecal-oral route. Biochemical oxygen demand test was also performed. Results confirmed the pollution of Santa Clara River. The identification of four adenovirus species suggests fecal contamination by human and animal feces.

Supported by Universidad de las Fuerzas Armadas - ESPE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wen, Y., Schoups, G., Van De Giesen, N.: Organic pollution of rivers: combined threats of urbanization, livestock farming and global climate change. Sci. Rep. 7(43289), 1–9 (2017)

    Google Scholar 

  2. Dugan, P., Allison, E.H.: Water: act now to restore river health. Nature 468(7321), 173 (2010)

    Article  Google Scholar 

  3. Xagoraraki, I., O’Brien, E.: Wastewater-based epidemiology for early detection of viral outbreaks. In: O’Bannon, D.J. (ed.) Women in Water Quality. WES, pp. 75–97. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17819-2_5

    Chapter  Google Scholar 

  4. Calgua, B., et al.: Detection and quantification of classic and emerging viruses by skimmed-milk flocculation and PCR in river water from two geographical areas. Water Res. 7(47), 2797–2810 (2013)

    Article  Google Scholar 

  5. Aizza, M., et al.: Viruses in wastewater: occurrence, abundance and detection methods. Sci. Total Environ. 745(140910), 2797–2810 (2020)

    Google Scholar 

  6. Fong, T., Lipp, E.K.: Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol. Mol. Biol. Rev. 69(2), 357–371 (2005)

    Article  Google Scholar 

  7. UNEP: A Snapshot of the World’s Water Quality: Towards a global assessment. United Nations Environment Programme, Nairobi, Kenya (2016)

    Google Scholar 

  8. WHO/UNICEF: Joint Monitoring Programme for Water Supply and Sanitation estimates for Ecuador (2010)

    Google Scholar 

  9. Rodriguez, H., Delgado, A., Nolasco, A., Saltiel, D., Gustavo, D.: From Waste to Resource: Shifting Paradigms for Smarter Wastewater Interventions in Latin America and the Caribbean. World Bank, Washington DC (2020)

    Book  Google Scholar 

  10. Gobierno Municipal de Rumiñahui. Homepage. http://www.ruminahui.gob.ec. Accessed 5 Jan 2020

  11. Rames, E., Roiko, A., Stratton, H., Macdonald, J.: Technical aspects of using human adenovirus as a viral water quality indicator. Water Res. 96(2016), 308–326 (2016)

    Article  Google Scholar 

  12. Jiang, S.: Human adenoviruses in water: occurrence and health implications: a critical review. Environ. Sci. Technol. 40(23), 7132–7140 (2006)

    Article  Google Scholar 

  13. Bofill-Mas, S., Rusiñol, M., Fernandez-Cassi, X., Carratalà, A., Hundesa, A., Girones, R.: Quantification of human and animal viruses to environmental samples. BioMed Res. Int. 2013(192089), 1–11 (2013)

    Article  Google Scholar 

  14. Ahmed, W., Goonetilleke, A., Gardner, T.: Human and bovine adenoviruses for the detection of source-specific fecal pollution in coastal waters in Australia. Water Res. 44(16), 4662–4673 (2010)

    Article  Google Scholar 

  15. Olalemi, A., Purnell, S., Caplin, J., Ebdon, J., Taylor, H.: The application of phage-based fecal pollution markers to predict the concentration of adenoviruses in mussels (Mytilus edulis) and their overlying waters. J. Appl. Microbiol. 121(4), 1152–1162 (2016)

    Article  Google Scholar 

  16. Benkö, M.: Adenoviruses: Pathogenesis. Elsevier Inc., Budapest (2015)

    Google Scholar 

  17. Iaconelli, M., et al.: Molecular characterization of human adenoviruses in urban wastewaters using next generation and Sanger sequencing. Water Res. 21(2017), 240–247 (2017)

    Article  Google Scholar 

  18. Jones, M., et al.: New adenovirus species found in a patient presenting with gastroenteritis. J. Virol. 81(11), 5978–5984 (2007)

    Article  Google Scholar 

  19. Maluquer, C., Clemente, P., Hundesa, A., Martín, M., Girones, R.: Detection of bovine and porcine adenoviruses for tracing the source of fecal contamination. Appl. Environ. Microbiol. 70(3), 1448–1454 (2004)

    Article  Google Scholar 

  20. Hemmi, S., et al.: Genomic and phylogenetic analyses of murine adenovirus 2. Virus Res. 160(1–2), 128–135 (2011)

    Article  Google Scholar 

  21. Guerrero-Latorre, L., et al.: Quito’s virome: metagenomic analysis of viral diversity in urban streams of Ecuador’s capital city. Sci. Total Environ. 645(2018), 1334–1343 (2018)

    Article  Google Scholar 

  22. Hernroth, B., Conden-Hanson, A., Rehnstam-Holm, A., Girones, R., Allard, A.: Environmental factors influencing human viral pathogens and their potential indicator organisms in the blue mussel, Mytilus edulis: the first Scandinavian report. Appl. Environ. Microbiol. 68(9), 4523–4533 (2002)

    Article  Google Scholar 

  23. Allard, A., Albinsson, B., Wadell, G.: Rapid typing of human adenoviruses by a general PCR combined with restriction endonuclease analysis. J. Clin. Microbiol. 39(2), 498–505 (2001)

    Article  Google Scholar 

  24. Vörösmarty, C., et al.: Global threats to human water security and river biodiversity. Nature 467(7315), 555–561 (2010)

    Article  Google Scholar 

  25. Ministerio del Ambiente de Ecuador: 097-A Refórmese el Texto Unificado de Legislación Secundaria. Registro Oficial. Año III - No 387, 6–78 Quito (2015)

    Google Scholar 

  26. Voloshenko-Rossin, A., et al.: Emerging pollutants in the Esmeraldas watershed in Ecuador: discharge and attenuation of emerging organic pollutants along the San Pedro-Guayllabamba-Esmeraldas rivers. Environ. Sci. Process. Impacts 17(1), 41–53 (2015)

    Article  Google Scholar 

  27. Colak, M., Bozdayi, G., Altay, A., Yalaki, Z., Ahmed, K., Ozkan, S.: Detection and molecular characterisation of adenovirus in children under 5 years old with diarrhoea. Turk. J. Med. Sci. 47(5), 1463–1471 (2017)

    Article  Google Scholar 

  28. Primo, D., Pacheco, G., Timenetsky, M., Luchs, A.: Surveillance and molecular characterization of human adenovirus in patients with acute gastroenteritis in the era of rotavirus vaccine, Brazil, 2012–2017. J. Clin. Virol. 109, 35–40 (2018)

    Article  Google Scholar 

  29. Farfán-García, A., et al.: Etiology of acute gastroenteritis among children less than 5 years of age in Bucaramanga, Colombia: a case-control study. PLoS Neglected Trop. Dis. 14(6), e0008375 (2020)

    Article  Google Scholar 

  30. Bil-Lula, I., Krzywonos-Zawadzka, A., Sawicki, G., Woźniak, M.: An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation. J. Med. Virol. 88(3), 400–407 (2015)

    Article  Google Scholar 

  31. Guerrero-Latorre, L., Ballesteros, I., Villacrés-Granda, I., Granda, M., Freire-Paspuel, B., Ríos-Touma, B.: SARS-CoV-2 in river water: implications in low sanitation countries. Sci. Total Environ. 743, 140832 (2020)

    Article  Google Scholar 

  32. Haack, S., et al.: Genes indicative of zoonotic and swine pathogens are persistent in stream water and sediment following a swine manure spill. Appl. Environ. Microbiol. 81(10), 3430–3441 (2015)

    Article  Google Scholar 

  33. Hundesa, A., Maluquer de Motes, C., Bofill-Mas, S., Albinana-Gimenez, N., Girones, R.: Identification of human and animal adenoviruses and polyomaviruses for determination of sources of fecal contamination in the environment. Appl. Environ. Microbiol. 72(12), 7886–7893 (2006)

    Article  Google Scholar 

  34. Duh, D., Hasic, S., Buzan, E.: The impact of illegal waste sites on a transmission of zoonotic viruses. Virol. J. 14(1), 134 (2017)

    Article  Google Scholar 

  35. Wong, K., Fong, T., Bibby, K., Molina, M.: Application of enteric viruses for fecal pollution source tracking in environmental waters. Environ. Int. 45, 151–164 (2012)

    Article  Google Scholar 

  36. Fauquet, C., Mayo, M., Maniloff, J., Desselberger, U., Ball, U.: Virus Taxonomy: Classification and Nomenclature of Viruses; 8th Report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press, New York (2005)

    Google Scholar 

Download references

Acknowledgements

This study was developed with research funds from Universidad de las Fuerzas Armadas – ESPE and Grupo de Investigación en Microbiología y Ambiente (GIMA). We thank Francisco Flores Ph. D., microbiology and bioinformatic specialist. This study could not be possible without the support of the Center of Nanoscience and Nanotechnology (CENCINAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Izquierdo .

Editor information

Editors and Affiliations

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarmiento, B., Koch, A., Bolaños, D., Izquierdo, A. (2021). Adenovirus for Detection of Fecal Pollution in Santa Clara River, Rumiñahui - Ecuador. In: Botto-Tobar, M., Montes León, S., Camacho, O., Chávez, D., Torres-Carrión, P., Zambrano Vizuete, M. (eds) Applied Technologies. ICAT 2020. Communications in Computer and Information Science, vol 1388. Springer, Cham. https://doi.org/10.1007/978-3-030-71503-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71503-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71502-1

  • Online ISBN: 978-3-030-71503-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics