Skip to main content

Dependable and Efficient Cloud-Based Safety-Critical Applications by Example of Automated Valet Parking

  • Conference paper
  • First Online:
Intelligent Transport Systems, From Research and Development to the Market Uptake (INTSYS 2020)

Abstract

Future embedded systems and services will be seamlessly connected and will interact on all levels with the infrastructure and cloud. For safety-critical applications this means that it is not sufficient to ensure dependability in a single embedded system, but it is necessary to cover the complete service chain including all involved embedded systems as well as involved services running in the edge or the cloud. However, for the development of such Cyber-Physical Systems-of-Systems (CPSoS) engineers must consider all kinds of dependability requirements. For example, it is not an option to ensure safety by impeding reliability or availability requirements. In fact, it is the engineers’ task to optimize the CPSoS’ performance without violating any safety goals.

In this paper, we identify the main challenges of developing CPSoS based on several industrial use cases and present our novel approach for designing cloud-based safety-critical applications with optimized performance by the example of an automated valet parking system. The evaluation shows that our monitoring and recovery solution ensures a superior performance in comparison to current methods, while meeting the system’s safety demands in case of connectivity-related faults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Road Vehicles - Functional Safety. Technical Report ISO 26262:2018 (2018)

    Google Scholar 

  2. Road vehicles - Safety of the Intended Functionality. Technical Report ISO/PAS 21448 (2019)

    Google Scholar 

  3. Biggs, G., Juknevicius, T., Armonas, A., Post, K.: Integrating safety and reliability analysis into MBSE: overview of the new proposed OMG standard. INCOSE Int. Symp. 28(1), 1322–1336 (2018). https://doi.org/10.1002/j.2334-5837.2018.00551.x

    Article  Google Scholar 

  4. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to place your apps in the fog: state of the art and open challenges. Softw.: Pract. Exp. (2019). https://doi.org/10.1002/spe.2766

  5. Clegg, K., Li, M., Stamp, D., Grigg, A., McDermid, J.: A SysML profile for fault trees—linking safety models to system design. In: SAFECOMP, pp. 85–93 (2019). https://doi.org/10.1007/978-3-030-26601-1_6

  6. Engell, S., Paulen, R., Reniers, M.A., Sonntag, C., Thompson, H.: Core research and innovation areas in cyber-physical systems of systems. In: Berger, C., Mousavi, M.R. (eds.) CyPhy 2015. LNCS, vol. 9361, pp. 40–55. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25141-7_4

    Chapter  Google Scholar 

  7. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 47(9), 1275–1296 (2017). https://doi.org/10.1002/spe.2509

    Article  Google Scholar 

  8. International Electrotechnical Commission: Hazard and Operability studies (HAZOP studies) - Application guide. Technical Report IEC 61882:2016

    Google Scholar 

  9. Ishigooka, T., Otsuka, S., Serizawa, K., Tsuchiya, R., Narisawa, F.: Graceful degradation design process for autonomous driving system. In: Romanovsky, A., Troubitsyna, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 19–34. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26601-1_2

    Chapter  Google Scholar 

  10. Kam, H.R., Lee, S.-H., Park, T., Kim, C.-H.: RViz: a toolkit for real domain data visualization. Telecommun. Syst. 60(2), 337–345 (2015). https://doi.org/10.1007/s11235-015-0034-5

    Article  Google Scholar 

  11. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation. SAE Int. J. Trans. Saf. 4, 15–24 (2016). https://doi.org/10.4271/2016-01-0128

    Article  Google Scholar 

  12. Kopetz, H., Bondavalli, A., Brancati, F., Frömel, B., Höftberger, O., Iacob, S.: Emergence in cyber-physical systems-of-systems (CPSoSs). In: Bondavalli, A., Bouchenak, S., Kopetz, H. (eds.) Cyber-Physical Systems of Systems. LNCS, vol. 10099, pp. 73–96. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47590-5_3

    Chapter  Google Scholar 

  13. Laprie, J.C.: From Dependability to Resilience. DSN (2008)

    Google Scholar 

  14. Lauer, M., Amy, M., Fabre, J.C., Roy, M., Excoffon, W., Stoicescu, M.: Resilient computing on ROS using adaptive fault tolerance. J. Softw.: Evol. Process 30(3), e1917 (2018). https://doi.org/10.1002/smr.1917

    Article  Google Scholar 

  15. Ledmi, A., Bendjenna, H., Hemam, S.M.: Fault tolerance in distributed systems: a survey. In: 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS), pp. 1–5, October 2018. https://doi.org/10.1109/PAIS.2018.8598484

  16. Ozeer, U., Etchevers, X., Letondeur, L., Ottogalli, F.G., Salaün, G., Vincent, J.M.: Resilience of stateful IoT applications in a dynamic fog environment. In: Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services - MobiQuitous 2018, pp. 332–341. ACM Press, New York (2018). https://doi.org/10.1145/3286978.3287007

  17. Qayyum, T., Malik, A.W., Khan Khattak, M.A., Khalid, O., Khan, S.U.: FogNetSim++: a toolkit for modeling and simulation of distributed fog environment. IEEE Access 6, 63570–63583 (2018). https://doi.org/10.1109/ACCESS.2018.2877696

    Article  Google Scholar 

  18. Quigley, M., et al.: ROS: an open-source robot operating system. In: Proceedings of the IEEE International Conference on Robotics and Automation Workshop on Open Source Software, vol. 3, p. 6 (2009)

    Google Scholar 

  19. Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Wehrle, K., Güneş, M., Gross, J. (eds) Modeling and Tools for Network Simulation, pp. 15–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12331-3_2

  20. Schleiss, P., Drabek, C., Weiss, G., Bauer, B.: Generic management of availability in fail-operational automotive systems. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 179–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66266-4_12

    Chapter  Google Scholar 

  21. Schmittner, C., Griessnig, G., Ma, Z.: Status of the development of ISO/SAE 21434. In: Larrucea, X., Santamaria, I., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2018. CCIS, vol. 896, pp. 504–513. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97925-0_43

    Chapter  Google Scholar 

  22. Schönemann, V.: Safety requirements and distribution of functions for automated valet parking. Dissertation, Technische Universität Darmstadt (2019)

    Google Scholar 

  23. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of safety in distributed systems. In: Proceedings of the 26th International Conference on Software Engineering, pp. 418–427. IEEE Computer Society, Edinburgh (2004). https://doi.org/10.1109/ICSE.2004.1317464

  24. Sonmez, C., Ozgovde, A., Ersoy, C.: EdgeCloudSim: an environment for performance evaluation of edge computing systems. Trans. Emerg. Telecommun. Technol. 29(11), e3493 (2018). https://doi.org/10.1002/ett.3493

    Article  Google Scholar 

  25. Thompson, N.C., Greenewald, K., Lee, K., Manso, G.F.: The Computational Limits of Deep Learning. arXiv:2007.05558 [cs, stat], July 2020

  26. Törngren, M., Sellgren, U.: Complexity challenges in development of cyber-physical systems. In: Lohstroh, M., Derler, P., Sirjani, M. (eds.) Principles of Modeling. LNCS, vol. 10760, pp. 478–503. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95246-8_27

    Chapter  Google Scholar 

  27. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment. In: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, pp. 1–10. ICST, Marseille (2008)

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has partially received funding from the Bavarian Ministry of Economic Affairs, Regional Development and Energy as Fraunhofer High Performance Center Secure Intelligent Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Drabek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Drabek, C. et al. (2021). Dependable and Efficient Cloud-Based Safety-Critical Applications by Example of Automated Valet Parking. In: Martins, A.L., Ferreira, J.C., Kocian, A., Costa, V. (eds) Intelligent Transport Systems, From Research and Development to the Market Uptake. INTSYS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 364. Springer, Cham. https://doi.org/10.1007/978-3-030-71454-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71454-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71453-6

  • Online ISBN: 978-3-030-71454-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics