Skip to main content

Identification of Continuous-Time Fractional Models from Noisy Input and Output Signals

  • Chapter
  • First Online:
Fractional Order Systems—Control Theory and Applications

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 364))

Abstract

It is well known that, in some practical system identification situations, measuring both input and output signals can commonly be affected by additive noises. In this paper, we consider the problem of identifying continuous-time fractional systems from noisy input and output measurements. The bias correction scheme, which aims at eliminating the bias introduced by the fractional order ordinary least squares method, is presented, based on the estimation of variances of the input and output measured noises. The compensation method for the input and output noises is also studied by introducing an augmented high-order fractional-order system in the identification algorithm. The presented algorithm is established to perform unbiased coefficients and fractional orders estimation. The promising performances of the proposed method are assessed via the identification of a fractional model and a fractional real electronic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All differentiation orders are exactly divisible by the same number, an integral number of times.

  2. 2.

    The difference between the open-loop transfer function phase and \(180^\circ \).

References

  1. Oustaloup, A.: La dérivation non entière. Hermès (1995)

    Google Scholar 

  2. Battaglia, J.-L., Le Lay, L., Batsale, J.-C., Oustaloup, A., Cois, Olivier: Utilisation de modèles d’identification non entiers pour la résolution de problèmes inverses en conduction. Int. J. Therm. Sci. 39(3), 374–389 (2000)

    Article  Google Scholar 

  3. Dalir, M., Bashour, M.: Applications of fractional calculus. Appl. Math. Sci. 4(21), 1021–1032 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Aoun, M., Malti, R., Levron, F. and Oustaloup, A.: Synthesis of fractional laguerre basis for system approximation. Automatica 43(9), 1640–1648 (2007)

    Google Scholar 

  5. Chen, Y., Wei, Y., Zhou, X., Wang, Y.: Stability for nonlinear fractional order systems: an indirect approach. Nonlinear Dyn. 89, 1011–1018 (2017)

    Article  Google Scholar 

  6. Denis, M.: Stability properties for generalized fractional differential systems. In Esaim: Proceedings, vol. 5, pp. 145–158. EDP Sciences. EDP Sciences (1998)

    Google Scholar 

  7. Lin, Jun, Poinot, Thierry, Trigeassou, Jean-Claude, Ouvrard, Régis: Parameter estimation of fractional systems: application to the modeling of a lead-acid battery. IFAC Proc. Volumes 33(15), 983–988 (2000)

    Article  Google Scholar 

  8. Luo, Y., Chen, Y.Q., Wang, C.Y., Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control 20(7), 823–831 (2010)

    Article  Google Scholar 

  9. Podlubny, Igor: Fractional-order systems and \(pi^\lambda d^\mu \) controller. IEEE Transact. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  Google Scholar 

  10. Zamani, A.-A., Tavakoli, S., Etedali, S.: Fractional order pid control design for semi-active control of smart base-isolated structures: a multi-objective cuckoo search approach. ISA Trans. 67, 222–232 (2017)

    Article  Google Scholar 

  11. Cois, O., Oustaloup, A., Poinot, T., Battaglia, J.L.: Fractional state variable filter for system identification by fractional model. In: European control conference (ecc), 2481–2486. IEEE (2001)

    Google Scholar 

  12. Cui, R., Dian, S., Wei, Y., Wang, Y.: Modulating function-based subspace identification for continuous-time fractional order systems. In: 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 618–623. IEEE (2017b)

    Google Scholar 

  13. Rachid, M., Victor, S., Oustaloup, A., Garnier, H., et al.: An optimal instrumental variable method for continuous-time fractional model identification. In: 17th ifac World Congress, pp. 1–6 (2008)

    Google Scholar 

  14. Sabatier, J., Aoun, M., Oustaloup, A., Grégoire, G., Ragot, Franck, Roy, Patrick: Fractional system identification for lead acid battery state of charge estimation. Signal Process 86(10), 2645–2657 (2006)

    Article  Google Scholar 

  15. Malti, R., Aoun, M., Sabatier, J., Oustaloup, A., et al.: Tutorial on system identification using fractional differentiation models. In: 14th Ifac Symposium on System Identification, pp. 606–611 (2006)

    Google Scholar 

  16. Lay, Le, L.: Identification fréquentielle et temporelle par modèle non entier. Université Bordeaux I, Ph.D. diss (1998)

    Google Scholar 

  17. Aoun, M.: Systemes linéaires non entiers et identification par bases orthogonales non entieres, p. 1. Université Bordeaux, Ph.D. diss (2005)

    Google Scholar 

  18. Victor, S.: Identification par modèle non entier pour la poursuite robuste de trajectoire par platitude, p. 1. Université Bordeaux, PhD diss (2010)

    Google Scholar 

  19. Victor, S., Rachid, M.: Model order identification for fractional models. In: European Control Conference (ECC), pp. 3470–3475. IEEE (2013)

    Google Scholar 

  20. Liu, D-Y., Laleg-Kirati, T-M., Gibaru, O., Perruquetti, W.: Identification of fractional order systems using modulating functions method. In: American Control Conference (ACC), pp. 1679–1684. IEEE (2013)

    Google Scholar 

  21. Maachou, A., Malti, R., Melchior, P., Battaglia, J.-L., Oustaloup, Alain, Hay, Bruno: Nonlinear thermal system identification using fractional volterra series. Control Eng. Pract. 29, 50–60 (2014)

    Article  Google Scholar 

  22. Cui, R., Wei, Y., Cheng, S., Wang, Y.: An innovative parameter estimation for fractional order systems with impulse noise. ISA Trans. 2017, (2017a). https://doi.org/10.1016/j.isatra.2017.06.025

  23. Yakoub, Z., Amairi, M., Chetoui, M., Aoun, M.: On the closed-loop system identification with fractional models. Circ. Syst. Signal Process 34, 3833–3860 (2015b)

    Article  MathSciNet  Google Scholar 

  24. Yakoub, Z., Chetoui, M., Amairi, M., Aoun, M.: A bias correction method for fractional closed-loop system identification. J. Process Control 33, 25–36 (2015a)

    Article  Google Scholar 

  25. Halvorsen, K.: Identification of Dynamic Errors-in-Variables Models. Uppsala University, Sweden (2013)

    Google Scholar 

  26. Thil, S.: Contributions à l’identification de modèles avec des erreurs en les variables. Université Henri Poincaré-Nancy I, PhD diss (2007)

    Google Scholar 

  27. Zheng, W.X.: A bias correction method for identification of linear dynamic errors-in-variables models. IEEE Trans. Autom. Control 47(7), 1142–1147 (2002)

    Article  MathSciNet  Google Scholar 

  28. Soverini, U., Söderström, T.: Frequency domain eiv identification: a frisch scheme approach. IFAC Proc. Volumes 47(3), 4631–4636 (2014)

    Article  Google Scholar 

  29. Söderström, T.: A generalized instrumental variable estimation method for errors-in-variables identification problems. Automatica 47(8), 1656–1666 (2011)

    Article  MathSciNet  Google Scholar 

  30. Söderström, T.: Identification of stochastic linear systems in presence of input noise. Automatica 17(5), 713–725 (1981)

    Article  MathSciNet  Google Scholar 

  31. Ivanov, D.V.: Identification discrete fractional order linear dynamic systems with errors-in-variables. In: East-West Design and Test Symposium, pp. 1–4. IEEE (2013)

    Google Scholar 

  32. Victor, S., Malti, R., Garnier, H., Oustaloup, A., et al.: Parameter and differentiation order estimation in fractional models. Automatica 49(4), 926–935 (2013)

    Article  MathSciNet  Google Scholar 

  33. Sergey, A., Rachid, M., Xavier, M., Mathieu, M., François, A., Guillemardb, F.: Optimal input design for continuous-time system identification. Commun. Nonlinear Sci. Numer. Simul. 60, 92–99 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yakoub, Z., Aoun, M., Amairi, M., Chetoui, M. (2022). Identification of Continuous-Time Fractional Models from Noisy Input and Output Signals. In: Naifar, O., Ben Makhlouf, A. (eds) Fractional Order Systems—Control Theory and Applications. Studies in Systems, Decision and Control, vol 364. Springer, Cham. https://doi.org/10.1007/978-3-030-71446-8_10

Download citation

Publish with us

Policies and ethics