Skip to main content

Ceramic Matrix Composites (CMCs)

  • Chapter
  • First Online:
Advances in Machining of Composite Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Ceramic matrix composites (CMCs) are a class of composite materials in which filler are incorporated within a ceramic matrix. As a result of filler addition to ceramic matrix, specific properties can be altered. There are various ways to manufacture ceramics and CMCs, mainly depending upon the filler material and the final application. One such property is a reduction in crack propagation. Although their constituents are brittle, CMCs have found their applications in the vast majority of the area, including space, refractories, energy storage, and automotive. This chapter considers classification and manufacturing CMCs. This chapter summarises state of the art for CMCs and their manufacturing techniques and lays the foundation for their micromachining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ghasali, E., et al.: Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering. J. Asian Ceram. Soc. 5(4), 472–478 (2017)

    Article  Google Scholar 

  2. Shirvanimoghaddam, K., et al.: Boron carbide reinforced aluminium matrix composite: physical, mechanical characterization and mathematical modelling. Mater. Sci. Eng., A 658, 135–149 (2016)

    Article  Google Scholar 

  3. Zhang, J., Tu, R., Goto, T.: 23—Cubic boron nitride-containing ceramic matrix composites for cutting tools. In: Low, I.M. (ed.) Advances in Ceramic Matrix Composites, pp. 570–586. Woodhead Publishing (2014)

    Google Scholar 

  4. Nuruzzaman, D.M., Kamaruzaman, F.F.B.: Processing and mechanical properties of aluminium-silicon carbide metal matrix composites. IOP Conf. Ser. Mater. Sci. Eng. 114, 012123 (2016)

    Article  Google Scholar 

  5. Porwal, H., et al.: Graphene reinforced alumina nano-composites. Carbon 64, 359–369 (2013)

    Article  Google Scholar 

  6. Khaliq, J., et al.: Effect of the piezoelectric ceramic filler dielectric constant on the piezoelectric properties of PZT-epoxy composites. Ceram. Int. 43(2), 2774–2779 (2017)

    Article  Google Scholar 

  7. Li, L.: Modeling cyclic fatigue hysteresis loops of 2D woven ceramic matrix composites at elevated temperatures in steam. Materials 9(6) (2016)

    Google Scholar 

  8. Zhang, K., et al.: Joining of Cf/SiC ceramic matrix composites: a review. Adv. Mater. Sci. Eng. 2018, 15 (2018)

    Google Scholar 

  9. Curtin, W.A., Sheldon, B.W.: CNT-reinforced ceramics and metals. Mater. Today 7(11), 44–49 (2004)

    Article  Google Scholar 

  10. Miranzo, P., Belmonte, M., Osendi, M.I.: From bulk to cellular structures: a review on ceramic/graphene filler composites. J. Eur. Ceram. Soc. 37(12), 3649–3672 (2017)

    Article  Google Scholar 

  11. Al Sheheri, S.Z., et al.: The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Des. Monomers Polym. 22(1), 8–53 (2019)

    Article  Google Scholar 

  12. Rathod, V.T., Kumar, J.S., Jain, A.: Polymer and ceramic nanocomposites for aerospace applications. Appl. Nanosci. 7(8), 519–548 (2017)

    Article  Google Scholar 

  13. Chu, B.T.T., et al.: Fabrication of carbon-nanotube-reinforced glass–ceramic nanocomposites by ultrasonic in situ sol–gel processing. J. Mater. Chem. 18(44), 5344–5349 (2008)

    Article  Google Scholar 

  14. Inam, F., et al.: Electrically conductive alumina–carbon nanocomposites prepared by spark plasma sintering. J. Eur. Ceram. Soc. 30(2), 153–157 (2010)

    Article  Google Scholar 

  15. Dassios, K.G., Matikas, T.E.: Damage assessment in a SiC-fiber reinforced ceramic matrix composite. J. Eng. 2013, 6 (2013)

    Google Scholar 

  16. Mechanical properties of ceramic matrix composites exposed to rig tests. In: 28th International Conference on Advanced Ceramics and Composites B: Ceramic Engineering and Science Proceedings, pp. 153–159

    Google Scholar 

  17. Gadow, R., Kern, F., Ulutas, H.: Mechanical properties of ceramic matrix composites with siloxane matrix and liquid phase coated carbon fiber reinforcement. J. Eur. Ceram. Soc. 25(2), 221–225 (2005)

    Article  Google Scholar 

  18. van de Goor, G., Sägesser, P., Berroth, K.: Electrically conductive ceramic composites. Solid State Ionics 101–103, 1163–1170 (1997)

    Google Scholar 

  19. Khaliq, J., et al.: Utilizing the phonon glass electron crystal concept to improve the thermoelectric properties of combined Yb-stuffed and Te-substituted CoSb3. Scripta Mater (0)

    Google Scholar 

  20. Sparks, T.D., Fuierer, P.A., Clarke, D.R.: Anisotropic thermal diffusivity and conductivity of La-doped strontium niobate Sr2Nb2O7. J. Am. Ceram. Soc. 93(4), 1136–1141 (2010)

    Article  Google Scholar 

  21. Galusek, D., Galusková, D.: Alumina matrix composites with non-oxide nanoparticle addition and enhanced functionalities. Nanomaterials 5(1), 115–143 (2015)

    Article  Google Scholar 

  22. Wozniak, M., et al.: Thermal conductivity of highly loaded aluminium nitride–poly(propylene glycol) dispersions. Int. J. Heat Mass Transf. 65, 592–598 (2013)

    Article  Google Scholar 

  23. Streicher, E., et al.: Densification and thermal conductivity of low-sintering-temperature AlN materials. J. Eur. Ceram. Soc. 6(1), 23–29 (1990)

    Article  Google Scholar 

  24. Choi, H.-S., et al.: Structural, thermal and mechanical properties of aluminum nitride ceramics with CeO2 as a sintering aid. Ceram. Int. 42(10), 11519–11524 (2016)

    Article  Google Scholar 

  25. Fabrichnaya, O., et al.: Liquid phase formation in the system Al2O3–Y2O3–AlN: Part II. Thermodynamic assessment. J. Eur. Ceram. Soc. 33(13), 2457–2463 (2013)

    Google Scholar 

  26. Molisani, A.L., Goldenstein, H., Yoshimura, H.N.: The role of CaO additive on sintering of aluminum nitride ceramics. Ceram. Int. 43(18), 16972–16979 (2017)

    Article  Google Scholar 

  27. Lee, H.M., Kim, D.K.: High-strength AlN ceramics by low-temperature sintering with CaZrO3–Y2O3 co-additives. J. Eur. Ceram. Soc. 34(15), 3627–3633 (2014)

    Article  Google Scholar 

  28. Yonezawa, T., et al.: Pressureless sintering of silicon-nitride composites. Compos. Sci. Technol. 51(2), 265–269 (1994)

    Article  Google Scholar 

  29. Cheng, L., et al.: Corrosion of a 3D-C/SiC composite in salt vapor environments. Carbon 40(6), 877–882 (2002)

    Article  Google Scholar 

  30. Niu, M., et al.: SiC/(SiC + glass)/glass coating for carbon-bonded carbon fibre composites. RSC Adv. 6(66), 61228–61234 (2016)

    Article  Google Scholar 

  31. Herrmann, M.: Corrosion of silicon nitride materials in aqueous solutions. J. Am. Ceram. Soc. 96(10), 3009–3022 (2013)

    Article  Google Scholar 

  32. Ahmad, K., Pan, W., Shi, S.-L.: Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Appl. Phys. Lett. 89(13), 133122 (2006)

    Article  Google Scholar 

  33. Ishikawa, T., et al.: A tough, thermally conductive silicon carbide composite with high strength up to 1600 ℃ in air. Science 282(5392), 1295 (1998)

    Article  Google Scholar 

  34. Chu, K., et al.: Thermal properties of graphene/metal composites with aligned graphene. Mater. Des. 140, 85–94 (2018)

    Article  Google Scholar 

  35. Walker, L.S., et al.: Toughening in graphene ceramic composites. ACS Nano 5(4), 3182–3190 (2011)

    Article  Google Scholar 

  36. Ramirez, C., et al.: Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. J. Eur. Ceram. Soc. 34(2), 161–169 (2014)

    Article  Google Scholar 

  37. Kvetková, L., et al.: Influence of processing on fracture toughness of Si3N4 + graphene platelet composites. J. Eur. Ceram. Soc. 33(12), 2299–2304 (2013)

    Article  Google Scholar 

  38. Zhang, Y., et al.: Effect of graphene orientation on microstructure and mechanical properties of silicon nitride ceramics. Process Appl Ceram 12(1), 27–35 (2018)

    Article  Google Scholar 

  39. Tapasztó, O., et al.: Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chem. Phys. Lett. 511(4–6), 340–343 (2011)

    Article  Google Scholar 

  40. Liu, J., Yan, H., Jiang, K.: Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 39(6), 6215–6221 (2013)

    Article  Google Scholar 

  41. Lee, B., et al.: Simultaneous strengthening and toughening of reduced graphene oxide/alumina composites fabricated by molecular-level mixing process. Carbon 78, 212–219 (2014)

    Article  Google Scholar 

  42. Belmonte, M., et al.: Toughened and strengthened silicon carbide ceramics by adding graphene-based fillers. Scripta Mater. 113, 127–130 (2016)

    Article  Google Scholar 

  43. Pereira dos Santos Tonello, K., et al.: Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets. Mater. Sci. Eng. A 659, 158–164 (2016)

    Google Scholar 

  44. Khaliq, J., et al.: Reduced thermal conductivity by nanoscale intergrowths in perovskite like layered structure La2Ti2O7. J. Appl. Phys. 117(7), 075101 (2015)

    Article  Google Scholar 

  45. Guo, X., et al.: Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid-state reaction at room temperature. Adv. Powder Technol. 24(6), 1034–1038 (2013)

    Article  Google Scholar 

  46. James, N.K., et al.: High piezoelectric voltage coefficient in structured lead-free (K, Na, Li)NbO3 particulate—epoxy composites. J. Am. Ceram. Soc. 99(12), 3957–3963 (2016)

    Article  Google Scholar 

  47. Amonpattaratkit, P., Ananta, S.: Effects of calcination temperature on phase formation and particle size of Zn2Nb34O87 powder synthesized by solid-state reaction. Mater. Chem. Phys. 139(2), 478–482 (2013)

    Article  Google Scholar 

  48. Khaliq, J., et al.: Utilizing the phonon glass electron crystal concept to improve the thermoelectric properties of combined Yb-stuffed and Te-substituted CoSb3. Scripta Mater. 72–73, 63–66 (2014)

    Article  Google Scholar 

  49. Bernardo, M.S., et al.: Reaction pathways in the solid state synthesis of multiferroic BiFeO3. J. Eur. Ceram. Soc. 31(16), 3047–3053 (2011)

    Article  Google Scholar 

  50. Suchanek, W.L., Lencka, M.M., Riman, R.E.: Chapter 18—hydrothermal synthesis of ceramic materials. In: Palmer, D.A., Fernández-Prini, R., Harvey, A.H. (eds.) Aqueous systems at elevated temperatures and pressures, pp. 717–744. Academic Press, London (2004)

    Chapter  Google Scholar 

  51. Zhou, Y., et al.: Hydrothermal synthesis and piezoelectric property of Ta-doping K0.5Na0.5NbO3 lead-free piezoelectric ceramic. Ceram. Int. 35(8), 3253–3258 (2009)

    Google Scholar 

  52. Villafuerte-Castrejón, E.M., et al.: Towards lead-free piezoceramics: facing a synthesis challenge. Materials 9(1) (2016)

    Google Scholar 

  53. Cai, Z., et al.: Molten salt synthesis of lead lanthanum zirconate titanate ceramic powders. J. Alloy. Compd. 454(1), 466–470 (2008)

    Article  Google Scholar 

  54. Cai, Z., et al.: Large-scale synthesis of Pb1−xLaxTiO3 ceramic powders by molten salt method. J. Alloy. Compd. 420(1), 273–277 (2006)

    Article  Google Scholar 

  55. Adelina, I., Sophie, G.-F., Bernard, D.: BaTiO3 thick films obtained by tape casting from powders prepared by the oxalate route. Process. Appl. Ceram. 3(1–2), 65–71 (2009)

    Google Scholar 

  56. Afrin, R., et al.: Synthesis of multiwalled carbon nanotube-based infrared radiation detector. Sens. Actuators, A 187, 73–78 (2012)

    Article  Google Scholar 

  57. Mazumder, S., et al.: Carbon nanotubes-porous ceramic composite by in situ CCVD growth of CNTs. Mater. Chem. Phys. 171, 247–251 (2016)

    Article  Google Scholar 

  58. Llorente, A., et al.: Jet milling as an alternative processing technique for preparing polysulfone hard nanocomposites. Adv. Mater. Sci. Eng. 2019, 8 (2019)

    Article  Google Scholar 

  59. Roy, S., et al.: Magnetic properties of glass-metal nanocomposites prepared by the sol-gel route and hot pressing. J. Appl. Phys. 74(7), 4746–4749 (1993)

    Article  Google Scholar 

  60. Palmero, P.: Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods. Nanomaterials 5(2), 656–696 (2015)

    Article  Google Scholar 

  61. Rodiles, X., et al.: Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube. Sci. Rep. 9(1), 9239 (2019)

    Article  Google Scholar 

  62. Kim, E.-H., Jung, Y.-G., Paik, U.: Microstructure and mechanical properties of Al2O3 composites with surface-treated carbon nanotubes (CNTs): dispersibility of modified carbon nanotubes (CNTs) on Al2O3 matrix. J. Nanosci. Nanotechnol. 12(2), 1332–1336 (2012)

    Article  Google Scholar 

  63. Sikder, P., et al.: Improved densification and mechanical properties of spark plasma sintered carbon nanotube reinforced alumina ceramics. Mater. Chem. Phys. 170, 99–107 (2016)

    Article  Google Scholar 

  64. Han, X.-X., et al.: Microstructure, sintering behavior and mechanical properties of SiC/MoSi2 composites by spark plasma sintering. Trans. Nonferrous Metals Soc. China 28(5), 957–965 (2018)

    Article  Google Scholar 

  65. Tan, X., et al.: Functionally graded nano hardmetal materials made by spark plasma sintering technology. J. Metastable Nanocrystalline Mater. 23, 179–182 (2005)

    Article  Google Scholar 

  66. Kinloch, I.A., et al.: Composites with carbon nanotubes and graphene: an outlook. Science 362(6414), 547 (2018)

    Article  Google Scholar 

  67. Sun, J., Gao, L., Li, W.: Colloidal processing of carbon nanotube/alumina composites. Chem. Mater. 14(12), 5169–5172 (2002)

    Article  Google Scholar 

  68. Gallardo-López, Á., et al.: Spark plasma sintered zirconia ceramic composites with graphene-based nanostructures. Ceramics 1(1), 153–164 (2018)

    Article  Google Scholar 

  69. Wang, K., et al.: Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull. 46(2), 315–318 (2011)

    Article  Google Scholar 

  70. Hintze, C., et al.: Facile sol–gel synthesis of reduced graphene oxide/silica nanocomposites. J. Eur. Ceram. Soc. 36(12), 2923–2930 (2016)

    Article  Google Scholar 

  71. Giampiccolo, A., et al.: Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2. Appl. Catal. B 243, 183–194 (2019)

    Article  Google Scholar 

  72. Román-Manso, B., et al.: Polymer-derived ceramic/graphene oxide architected composite with high electrical conductivity and enhanced thermal resistance. J. Eur. Ceram. Soc. 38(5), 2265–2271 (2018)

    Article  Google Scholar 

  73. Ji, F., et al.: Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries. J. Mater. Chem. 19(47), 9063–9067 (2009)

    Article  Google Scholar 

  74. Porwal, H., et al.: Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets. Sci. Technol. Adv. Mater. 14(5), 055007 (2013)

    Article  Google Scholar 

  75. Selzer, R., Friedrich, K.: Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture. Compos. A Appl. Sci. Manuf. 28(6), 595–604 (1997)

    Article  Google Scholar 

  76. Mouchon, E., Colomban, P.: Oxide ceramic matrix/oxide fibre woven fabric composites exhibiting dissipative fracture behaviour. Composites 26(3), 175–182 (1995)

    Article  Google Scholar 

  77. Sadighzadeh, A., et al.: Study of sintering temperature on the structure of silicon carbide membrane. J. Theor. Appl. Phys. 8(4), 169–173 (2014)

    Article  Google Scholar 

  78. Yin, C., et al., NaCa4V5O17: A low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications. J. Eur. Ceram. Soc. (2019)

    Google Scholar 

  79. Oghbaei, M., Mirzaee, O.: Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloy. Compd. 494(1), 175–189 (2010)

    Article  Google Scholar 

  80. Ohtaka, O., et al.: High-pressure and high-temperature generation using diamond/SiC composite anvils prepared with hot isostatic pressing. High Pressure Research 25(1), 11–15 (2005)

    Article  Google Scholar 

  81. She, J., Guo, J., Jiang, D.: Hot isostatic pressing of α-silicon carbide ceramics. Ceram. Int. 19(5), 347–351 (1993)

    Article  Google Scholar 

  82. Zulfia, A., et al.: Effect of hot isostatic pressing on cast A357 aluminium alloy with and without SiC particle reinforcement. J. Mater. Sci. 34(17), 4305–4310 (1999)

    Article  Google Scholar 

  83. Grasso, S., et al.: Low-temperature spark plasma sintering of pure nano WC powder. J. Am. Ceram. Soc. 96(6), 1702–1705 (2013)

    Article  Google Scholar 

  84. Byon, C., et al.: Numerical study of a SiC mould subjected to a spark plasma sintering process. Scripta Mater. 96, 49–52 (2015)

    Article  Google Scholar 

  85. Gavalda Diaz, O., et al.: The new challenges of machining Ceramic Matrix Composites (CMCs): review of surface integrity. Int. J. Mach. Tools Manuf 139, 24–36 (2019)

    Article  Google Scholar 

  86. Després, J.-F., Monthioux, M.: Mechanical properties of C/SiC composites as explained from their interfacial features. J. Eur. Ceram. Soc. 15(3), 209–224 (1995)

    Article  Google Scholar 

  87. O’Donnell, K., Kuhrt, C., Coey, J.M.D.: Influence of nitrogen content on coercivity in remanence-enhanced mechanically alloyed Sm-Fe-N. J. Appl. Phys. 76(10), 7068–7070 (1994)

    Article  Google Scholar 

  88. Akbari, H., Zeynali, H., Bakhshayeshi, A.: Interparticle interactions of FePt core and Fe3O4 shell in FePt/Fe3O4 magnetic nanoparticles. Phys. Lett. A 380(7), 927–936 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibran Khaliq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khaliq, J. (2021). Ceramic Matrix Composites (CMCs). In: Shyha, I., Huo, D. (eds) Advances in Machining of Composite Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-71438-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71438-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71437-6

  • Online ISBN: 978-3-030-71438-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics