Skip to main content

Geospatial Technology for Human Well-Being and Health: An Overview

  • Chapter
  • First Online:
Geospatial Technology for Human Well-Being and Health

Abstract

With continuing advancements in the availability of geospatial data, analytical tools, and computational capacity of multidisciplinary and multiscale data, geospatial technology as a whole has become enormously powerful and functional. Complex concepts like human well-being and health require robust analytical capability, which modern-day geospatial tools can provide. While human well-being and health can be defined only conceptually, both medicine and technology are rather very practical hands-on matters. Unless both of these worlds are meaningfully bridged together, full mutual benefits are not reachable. Over the last 30 years or so, there have been tremendous advancements in the area of geospatial health; however, somehow, two aspects have not received as much attention as they should have received. These are (a) limitations of different spatial analytical tools and (b) progress in making Geospatial Individual Environmental Exposure (GIEE) available for advanced health research and also for clinical practice in a usable format. Most of the chapters in this book volume address the first issue. This chapter focuses on discussing how geospatial technology can contribute to (a) emerging health science research, and (b) the clinical practice of medicine. This chapter also provides background information on relevant concepts, terminologies, technologies, and organizations, which are often unfamiliar to the emerging geospatial health professionals. Hopefully, this chapter will provide a comprehensive idea irrespective of the geospatial specialty of the readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is the activity of updating instructions of a satellite's operations, which can be done i.a. to change the observation pattern of overflying satellites above a given area.

References

  • Abouchar, T.S., M.J. Biernat, A.C. Guinn, D.E. Gura, M. Lakshmanaperumal, and R.B. Robbins. 2015. Uses of location tracking in mobile devices. U.S. Patent No. 8,944,916. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Acker, J.G. 2021. Using the NASA Giovanni system to assess and evaluate re-motely-sensed and model data variables relevant to public health issues. In Geospatial Technology for Human Well-being and Health, ed. F.S. Faruque. Springer.

    Google Scholar 

  • Act, P. 2000. Personal information protection and electronic documents Act. Department of Justice, Canada. Retrieved 24 December 2020, from http://laws.justice.gc.ca/en/P-8.6/text.html.

  • Adams, C., P. Riggs, and J. Volckens. 2009. Development of a method for personal, spatiotemporal exposure assessment. Journal of Environmental Monitoring 11 (7): 1331–1339.

    Google Scholar 

  • Akarturk, B. 2020. The role and challenges of using digital tools for COVID-19 contact tracing. The European Journal of Social & Behavioural Sciences 29 (3): 3241–3248.

    Google Scholar 

  • Allen, M., J. Allen, S. Hogarth, and M. Marmot. 2013. Working for health equity: The role of health professionals. London: UCL Institute of Health Equity.

    Google Scholar 

  • Alman, B.L., J.A. Stingone, M. Yazdy, L.D. Botto, T.A. Desrosiers, S. Pruitt, et al. 2019. Associations between PM2.5 and risk of preterm birth among liveborn infants. Annals of Epidemiology 39: 46–53.

    Google Scholar 

  • Andersen, Z.J., M. Stafoggia, G. Weinmayr, M. Pedersen, C. Galassi, J.T. Jørgensen, et al. 2017. Long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in 15 European cohorts within the ESCAPE project. Environmental Health Perspectives 125 (10): 107005.

    Google Scholar 

  • Anderson, H.R., B.K. Butland, A. van Donkelaar, M. Brauer, D.P. Strachan, T. Clayton, et al. 2012. Satellite-based estimates of ambient air pollution and global variations in childhood asthma prevalence. Environmental Health Perspectives 120 (9): 1333–1339.

    Google Scholar 

  • Anenberg, S.C., L.W. Horowitz, D.Q. Tong, and J.J. West. 2010. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environmental Health Perspectives 118 (9): 1189–1195.

    Google Scholar 

  • Apte, J.S., J.D. Marshall, A.J. Cohen, and M. Brauer. 2015. Addressing global mortality from ambient PM2. 5. Environmental Science & Technology 49 (13): 8057–8066.

    Google Scholar 

  • Apte, A., V. Ingole, P. Lele, A. Marsh, T. Bhattacharjee, S. Hirve, et al. 2019. Ethical considerations in the use of GPS-based movement tracking in health research–lessons from a care-seeking study in rural West India. Journal of Global Health 9 (1).

    Google Scholar 

  • Arano, K.A.G., S. Sun, and J. Ordieres-Mere. 2019. The use of the internet of things for estimating personal pollution exposure. International Journal of Environmental Research and Public Health 16 (17): 3130.

    Google Scholar 

  • Arvor, D., N. Stelling, M. Van der Merwe, S. Richter, A. Richter, G. Neumann, et al. 2011, April. Identification of earth observation data for health-environment studies. In In 34th international symposium on remote sensing of environment. Sydney: Australia.

    Google Scholar 

  • ATSDR. 2015. Taking an exposure history. Retrieved 24 Dec 2020, from https://www.atsdr.cdc.gov/csem/exphistory/docs/exposure_history.pdf

  • Ayres, I., A. Romano, & C. Sotis. 2020. How to make COVID-19 contact tracing apps work: insights from behavioral economics. Available at SSRN 3689805.

    Google Scholar 

  • Baccarelli, A., and S. Ghosh. 2012. Environmental exposures, epigenetics and cardiovascular disease. Current Opinion in Clinical Nutrition and Metabolic Care 15 (4): 323.

    Google Scholar 

  • Bach, B., P. Dragicevic, D. Archambault, C. Hurter, & S. Carpendale. 2014, June. A review of temporal data visualizations based on space-time cube operations. Eurographics Conference on Visualization, Jun 2014, Swansea, Wales, United Kingdom. hal-01006140.

    Google Scholar 

  • Bai, X., I. Nath, A. Capon, N. Hasan, and D. Jaron. 2012. Health and wellbeing in the changing urban environment: Complex challenges, scientific responses, and the way forward. Current Opinion in Environmental Sustainability 4 (4): 465–472.

    Google Scholar 

  • Barouki, R., K. Audouze, X. Coumoul, F. Demenais, and D. Gauguier. 2018. Integration of the human exposome with the human genome to advance medicine. Biochimie 152: 155–158.

    Google Scholar 

  • Becchetti, L., G. Conzo, P. Conzo, & F. Salustri. 2020. Understanding the heterogeneity of adverse COVID-19 outcomes: The role of poor quality of air and lockdown decisions. Available at SSRN 3572548.

    Google Scholar 

  • Bircher, J. 2005. Towards a dynamic definition of health and disease. Medicine, Health Care and Philosophy 8 (3): 335–341.

    Google Scholar 

  • Birenboim, A., and N. Shoval. 2016. Mobility research in the age of the smartphone. Annals of the American Association of Geographers 106 (2): 283–291.

    Google Scholar 

  • BMJ. 2008. Editorials, How should health be defined? BMJ: 337. https://doi.org/10.1136/bmj.a2900. (Published 10 December 2008). Cite this as: BMJ 2008;337:a2900/.

  • ———. 2011. How should we define health?- Responses. BMJ 343: d4163. https://www.bmj.com/content/343/bmj.d4163/rapid-responses.

    Google Scholar 

  • Bollati, V., and A. Baccarelli. 2010. Environmental epigenetics. Heredity 105 (1): 105–112.

    Google Scholar 

  • Borro, M., P. Di Girolamo, G. Gentile, O. De Luca, R. Preissner, A. Marcolongo, et al. 2020. Evidence-based considerations exploring relations between SARS-CoV-2 pandemic and air pollution: involvement of PM2. 5-mediated up-regulation of the viral receptor ACE-2. International Journal of Environmental Research and Public Health 17 (15): 5573.

    Google Scholar 

  • Bousquet, J., P.G. Burney, T. Zuberbier, P.V. Cauwenberge, C.A. Akdis, C. Bindslev-Jensen, et al. 2009. GA2LEN (Global Allergy and Asthma European Network) addresses the allergy and asthma ‘epidemic’. Allergy 64 (7): 969–977.

    Google Scholar 

  • Brand, G., Collins, J., Bedi, G., Bonnamy, J., Barbour, L., Ilangakoon, C., . . . Nayna Schwerdtle, P. 2020. ‘I Teach It Because It Is the Biggest Threat to Health’: Integrating a Planetary Health Perspective into Health Professions Education. Available at SSRN 3566173.

    Google Scholar 

  • Breslin, S., M. Shareck, and D. Fuller. 2019. Research ethics for mobile sensing device use by vulnerable populations. Social Science & Medicine 232: 50–57.

    Google Scholar 

  • Brook, R.D., S. Rajagopalan, C.A. Pope III, J.R. Brook, A. Bhatnagar, A.V. Diez-Roux, et al. 2010. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 121 (21): 2331–2378.

    Google Scholar 

  • Buchanan, W.J., M.A. Imran, M. Ur-Rehman, L. Zhang, Q.H. Abbasi, C. Chrysoulas, et al. 2020. Review and Critical Analysis of Privacy-preserving Infection Tracking and Contact Tracing. arXiv preprint arXiv 2009: 05126.

    Google Scholar 

  • Budge, A.M., Grobicki, A.M., Rosenberg, M., Selinus, O., Steinnes, E., and Enow, A. 2009. Mapping GeoUnions to the ICSU Framework for Sustainable Health and Wellbeing: Focus on sub-Saharan African Cities. Joint Science Project Team for Health (JSPT-H). Contractor Report for ICSU Committee on Scientific Planning and Review.

    Google Scholar 

  • Burney, P.G.J., R.B. Newson, M.S. Burrows, and D.M. Wheeler. 2008. The effects of allergens in outdoor air on both atopic and nonatopic subjects with airway disease. Allergy 63 (5): 542–546.

    Google Scholar 

  • Butler, C.D. 2018. Planetary epidemiology: Towards first principles. Current Environmental Health Reports 5 (4): 418–429.

    Google Scholar 

  • Butler, C., R. Chambers, K. Chopra, P. Dasgupta, A. K. Duraiappah, P. Kumar, . . . W.-Y. Niu 2003. Ecosystems and human well-being. Ecosystems and human well-being a framework for assessment, 71–84.

    Google Scholar 

  • Çakmak, T., & Ş. Eroğlu. 2019. User privacy in mobile health applications. HEALTHINFO 2019 : The Fourth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing.

    Google Scholar 

  • Callahan, D. 1973. The WHO definition of ‘health’. Hastings Center Studies, 77–87.

    Google Scholar 

  • Canali, S. 2020. Making evidential claims in epidemiology: Three strategies for the study of the exposome. Studies in history and philosophy of science Part C: Studies in history and philosophy of biological and biomedical sciences. 101248.

    Google Scholar 

  • Cao, H., V. Leung, C. Chow, and H. Chan. 2009. Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine 47 (12): 84–93.

    Google Scholar 

  • CDC. 2000. Gene-Environment Interaction Fact Sheet. Retrieved 24 December 2020, from https://advancedmedicine.ca/wp-content/uploads/2013/09/The-Gene-Environment-Interaction-Centre-for-Disease-Control.pdf

  • ———. 2020a. Health-Related Quality of Life (HRQOL). Retrieved 24 December 2020, from https://www.cdc.gov/hrqol/wellbeing.htm

  • ———. 2020b. Social determinants of health: know what affects health. Retrieved 24 December 2020, from https://www.cdc.gov/socialdeterminants/index.htm

  • Chai, Y., and M.P. Kwan. 2015. Suburbanization, daily lifestyle and space-behavior interaction in Beijing. Dili Xuebao/Acta Geographica Sinica 70 (8): 1271–1280.

    Google Scholar 

  • Chakrabarty, R.K., P. Beeler, P. Liu, S. Goswami, R.D. Harvey, S. Pervez, et al. 2020. Ambient PM2. 5 exposure and rapid spread of COVID-19 in the United State. Science of the Total Environment 760: 143391.

    Google Scholar 

  • Charreire, H., C. Weber, B. Chaix, P. Salze, R. Casey, A. Banos, et al. 2012. Identifying built environmental patterns using cluster analysis and GIS: Relationships with walking, cycling and body mass index in French adults. International Journal of Behavioral Nutrition and Physical Activity 9 (1): 59.

    Google Scholar 

  • Chatzidiakou, L., A. Krause, O.A. Popoola, A. Di Antonio, M. Kellaway, Y. Han, et al. 2019. Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments. Atmospheric Measurement Techniques 12 (8): 4643.

    Google Scholar 

  • Cheli. 2020. Personal communication, November 2020. Simonetta Cheli, Head of Strategy, Programme & Coordination Office, Directorate of Earth Observation Programmes. ESA - European Space Agency Headquarters.

    Google Scholar 

  • Chowdhury, S., S. Dey, L. Di Girolamo, K.R. Smith, A. Pillarisetti, and A. Lyapustin. 2019. Tracking ambient PM2. 5 build-up in Delhi national capital region during the dry season over 15 years using a high-resolution (1 km) satellite aerosol dataset. Atmospheric Environment 204: 142–150.

    Google Scholar 

  • ClimateAction. 2020. European Space Agency on how their technology can be used to combat climate change. Retrieved 24 December 2020, from http://www.climateaction.org/climate-leader-interviews/european-space-agency-on-how-their-technology-can-be-used-to-combat-climate

  • Cohen, A.J., M. Brauer, R. Burnett, H.R. Anderson, J. Frostad, K. Estep, et al. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet 389 (10082): 1907–1918.

    Google Scholar 

  • Coleman, A., S. Dhesi, and S. Peckham. 2016. Health and wellbeing boards: The new system stewards. Dismantling the NHS: 279–300.

    Google Scholar 

  • Dales, R.E., S. Cakmak, R.T. Burnett, S.T.A.N. Judek, F. Coates, and J.R. Brook. 2000. Influence of ambient fungal spores on emergency visits for asthma to a regional children’s hospital. American Journal of Respiratory and Critical Care Medicine 162 (6): 2087–2090.

    Google Scholar 

  • Dar, A.B., A.H. Lone, S. Zahoor, A.A. Khan, and R. Naaz. 2020. Applicability of mobile contact tracing in fighting pandemic (covid-19): Issues, challenges and solutions. Computer Science Review 38: 100307.

    Google Scholar 

  • De Carli, A., M. Franco, A. Gassmann, C. Killer, B. Rodrigues, E. Scheid, et al. 2020. WeTrace--A Privacy-preserving Mobile COVID-19 Tracing Approach and Application. arXiv preprint arXiv 2004: 08812.

    Google Scholar 

  • De Nazelle, A., E. Seto, D. Donaire-Gonzalez, M. Mendez, J. Matamala, M.J. Nieuwenhuijsen, and M. Jerrett. 2013. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environmental Pollution 176: 92–99.

    Google Scholar 

  • DeBord, D.G., T. Carreón, T.J. Lentz, P.J. Middendorf, M.D. Hoover, and P.A. Schulte. 2016. Use of the “exposome” in the practice of epidemiology: A primer on-omic technologies. American Journal of Epidemiology 184 (4): 302–314.

    Google Scholar 

  • Dennis, K.K., E. Marder, D.M. Balshaw, Y. Cui, M.A. Lynes, G.J. Patti, et al. 2017. Biomonitoring in the era of the exposome. Environmental Health Perspectives 125 (4): 502–510.

    Google Scholar 

  • Dhingra, S., R.B. Madda, A.H. Gandomi, R. Patan, and M. Daneshmand. 2019. Internet of things mobile–air pollution monitoring system (IoT-Mobair). IEEE Internet of Things Journal 6 (3): 5577–5584.

    Google Scholar 

  • Dominici, F., R.D. Peng, M.L. Bell, L. Pham, A. McDermott, S.L. Zeger, and J.M. Samet. 2006. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295 (10): 1127–1134.

    Google Scholar 

  • Eddins, E.A.R. 1998. Nursing, health, and the environment: Strengthening the relationship to improve the Public's health. Nursing and Health Care Perspectives 19 (1): 43–45.

    Google Scholar 

  • Ekong, I., E. Chukwu, and M. Chukwu. 2020. COVID-19 Mobile positioning data contact tracing and patient privacy regulations: Exploratory search of global response strategies and the use of digital tools in Nigeria. JMIR mHealth and uHealth 8 (4): e19139.

    Google Scholar 

  • EO4HEALTH. 2020. Earth Observations for Health (EO4HEALTH). Retrieved 24 December 2020, from http://www.geohealthcop.org/eo4health

  • EPA 2010. Developing the Next Generation of Air Quality Measurement Technology, initial announcement of this funding opportunity. Retrieved 24 December 2020, from https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.rfatext/rfa_id/540

  • ———. 2020. Air Measuring and Monitoring Research. Retrieved 24 December 2020, from https://www.epa.gov/air-research/air-measuring-and-monitoring-research

  • Evans, J., A. van Donkelaar, R.V. Martin, R. Burnett, D.G. Rainham, N.J. Birkett, and D. Krewski. 2013. Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environmental Research 120: 33–42.

    Google Scholar 

  • Fang, T.B., and Y. Lu. 2011. Constructing a near real-time space-time cube to depict urban ambient air pollution scenario. Transactions in GIS 15 (5): 635–649.

    Google Scholar 

  • ———. 2012. Personal real-time air pollution exposure assessment methods promoted by information technological advances. Annals of GIS 18 (4): 279–288.

    Google Scholar 

  • Faruque, F.S. 2019. Geospatial technology in environmental health applications. Environmental Monitoring and Assessment 191 (2): 333.

    Google Scholar 

  • Faruque, F.S., and R.W. Finley. 2016. Geographic Medical History: Advances in Geospatial Technology Present New Potentials in Medical Practice. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences XLI-B8: 191–195.

    Google Scholar 

  • Faruque, F.S., H. Li, W.B. Williams, L.A. Waller, B.T. Brackin, L. Zhang, et al. 2014. GeoMedStat: an integrated spatial surveillance system to track air pollution and associated healthcare events. Geospatial Health 8: S631–S646.

    Google Scholar 

  • N. Fenton, S. McLachlan, P. Lucas, K. Dube, G. Hitman, M. Osman, ... and M. Neil. 2020. A privacy-preserving Bayesian network model for personalised COVID19 risk assessment and contact tracing. medRxiv.

    Google Scholar 

  • Fowlie, M., E. Rubin, & R. Walker. 2019. Bringing satellite-based air quality estimates down to earth. Paper presented at the AEA Papers and Proceedings.

    Google Scholar 

  • Fraccaro, P., A. Beukenhorst, M. Sperrin, S. Harper, J. Palmier-Claus, S. Lewis, et al. 2019. Digital biomarkers from geolocation data in bipolar disorder and schizophrenia: A systematic review. Journal of the American Medical Informatics Association 26 (11): 1412–1420.

    Google Scholar 

  • Frith, J., and M. Saker. 2020. It is all about location: Smartphones and tracking the spread of COVID-19. Social Media+ Society 6 (3): 2056305120948257.

    Google Scholar 

  • Fu, P., X. Guo, F.M.H. Cheung, and K.K.L. Yung. 2019. The association between PM2.5 exposure and neurological disorders: A systematic review and meta-analysis. Science of the Total Environment 655: 1240–1248.

    Google Scholar 

  • Garg, Lalit, E. Chukwu, N. Nasser, C. Chakraborty, and G. Garg. 2020. Anonymity preserving IoT-based COVID-19 and other infectious disease contact tracing model. IEEE Access.

    Google Scholar 

  • Gehle, K.S., J.L. Crawford, and M.T. Hatcher. 2011. Integrating environmental health into medical education. American Journal of Preventive Medicine 41 (4): S296–S301.

    Google Scholar 

  • GEO. 2020. Group on Earth Observations. Retrieved 24 December 2020, from http://www.earthobservations.org/geo_community.php

  • Geohealthcop. 2020. GEO Health Community of Practice. Retrieved 24 December 2020, from http://www.geohealthcop.org/

  • GEOSS. 2020. Global Earth Observation System of Systems (GEOSS). Retrieved 24 December 2020, from https://earthobservations.org/geoss.php

  • Goldenholz, D.M., S.R. Goldenholz, K.B. Krishnamurthy, J. Halamka, B. Karp, M. Tyburski, et al. 2018. Using mobile location data in biomedical research while preserving privacy. Journal of the American Medical Informatics Association 25 (10): 1402–1406.

    Google Scholar 

  • Goldman, R.H., S. Rosenwasser, and E. Armstrong. 1999. Incorporating an environmental/occupational medicine theme into the medical school curriculum. Journal of Occupational and Environmental Medicine 41 (1): 47–52.

    Google Scholar 

  • Greaves, Z., and S. McCafferty. 2017. Health and wellbeing boards: Public health decision making bodies or political pawns? Public Health 143: 78–84.

    Google Scholar 

  • Green, P.M. 2000. Taking environmental health education seriously. Nursing and Health Care Perspectives 21 (5): 234–234.

    Google Scholar 

  • Griffin, D.W., E.N. Naumova, J.C. McEntee, D. Castronovo, J.L. Durant, M.L. Lyles, F. Faruque, and D. Lary. 2012. Chapter 4: Air quality and human health, (Chapter 4), pages 129–185. In Environmental Tracking for Public Health Surveillance, International Society for Photogrammetry and Remote Sensing (ISPRS) Commission VIII/WG-2, ed. S. Morain and A. Budge. Leiden: CRC Press Taylor & Francis. ISBN 9780415584715.

    Google Scholar 

  • Gulliver, J., D. Morley, C. Dunster, A. McCrea, E. van Nunen, M.Y. Tsai, et al. 2018. Land use regression models for the oxidative potential of fine particles (PM2. 5) in five European areas. Environmental Research 160: 247–255.

    Google Scholar 

  • Guloksuz, S., J. van Os, and B.P. Rutten. 2018. The exposome paradigm and the complexities of environmental research in psychiatry. JAMA Psychiatry 75 (10): 985–986.

    Google Scholar 

  • Guo, T., Y. Wang, H. Zhang, Y. Zhang, J. Zhao, Q. Wang, et al. 2018. The association between ambient PM2.5 exposure and the risk of preterm birth in China: A retrospective cohort study. Science of the Total Environment 633: 1453–1459.

    Google Scholar 

  • Gupta, P., S.A. Christopher, J. Wang, R. Gehrig, Y. Lee, and N. Kumar. 2006. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment 40 (30): 5880–5892.

    Google Scholar 

  • Gupta, R., M. Bedi, P. Goyal, S. Wadhera, and V. Verma. 2020. Analysis of COVID-19 tracking tool in India: Case Study of Aarogya Setu Mobile Application. Digital Government: Research and Practice 1 (4): 1–8.

    Google Scholar 

  • Hagler, G. 2016. Next-generation air measurement technologies. EPA Office of Research and Development. https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=527435

  • Hamm, N.A., R.J. Soares Magalhães, and A.C. Clements. 2015. Earth observation, spatial data quality, and neglected tropical diseases. PLoS Neglected Tropical Diseases 9 (12): e0004164.

    Google Scholar 

  • Hart, J. 2017. Taking an environmental exposure history. Alternative and Complementary Therapies 23 (2): 64–65.

    Google Scholar 

  • Hay, S.I., M.J. Packer, and D.J. Rogers. 1997. Review article the impact of remote sensing on the study and control of invertebrate intermediate hosts and vectors for disease. International Journal of Remote Sensing 18 (14): 2899–2930.

    Google Scholar 

  • Hendryx, M., and J. Luo. 2020. COVID-19 prevalence and fatality rates in association with air pollution emission concentrations and emission sources. Environmental Pollution 265: 115126.

    Google Scholar 

  • Herbreteau, V., G. Salem, M. Souris, J.P. Hugot, and J.P. Gonzalez. 2007. Thirty years of use and improvement of remote sensing, applied to epidemiology: From early promises to lasting frustration. Health & Place 13 (2): 400–403.

    Google Scholar 

  • Hou, L., X. Zhang, D. Wang, and A. Baccarelli. 2012. Environmental chemical exposures and human epigenetics. International Journal of Epidemiology 41 (1): 79–105.

    Google Scholar 

  • HP2020. 2020. Social determinants of health, Healthy People 2020. Retrieved 24 December 2020, from https://www.healthypeople.gov/2020/topics-objectives/topic/social-determinants-of-health

  • HP2030. 2020. Social determinants of health, Healthy People 2030. Retrieved 24 December 2020, from https://health.gov/healthypeople/objectives-and-data/social-determinants-health

  • Hu, H., Z. Hu, K. Zhong, J. Xu, F. Zhang, Y. Zhao, and P. Wu. 2019. Satellite-based high-resolution mapping of ground-level PM2. 5 concentrations over East China using a spatiotemporal regression kriging model. Science of the Total Environment 672: 479–490.

    Google Scholar 

  • Huang, C.C., B.Y. Chen, S.C. Pan, Y.L. Ho, and Y.L. Guo. 2019. Prenatal exposure to PM2.5 and congenital heart diseases in Taiwan. Science of the Total Environment 655: 880–886.

    Google Scholar 

  • Huber, M., J.A. Knottnerus, L. Green, H. van der Horst, A.R. Jadad, D. Kromhout, et al. 2011. How should we define health? BMJ 343: d4163.

    Google Scholar 

  • ICSU. 2011. Report of the ICSU planning group on health and wellbeing in the changing urban environment: A systems analysis approach. Paris: International Council for Science.

    Google Scholar 

  • Ihde, E., B. Kligler, G.P. Zipp, & C. Rocchetti. 2020. The impact of integrating environmental health into medical school curricula: A survey-based study.

    Google Scholar 

  • ISC. 2020. The International Science Council (ISC). Retrieved 24 December 2020, from https://council.science/about-us/

  • Ismail-Zadeh, A. 2016. Geoscience international: The role of scientific unions. History of Geo-and Space Sciences 7 (2): 103–123.

    Google Scholar 

  • Ismail-Zadeh and Joselyn. 2019. Editors, special issue-The International Union of Geodesy and Geophysics: From different spheres to a common globe, History of Geo- and Space Sciences.

    Google Scholar 

  • Jerrett, M., M.C. Turner, B.S. Beckerman, C.A. Pope III, A. Van Donkelaar, R.V. Martin, et al. 2017. Comparing the health effects of ambient particulate matter estimated using ground-based versus remote sensing exposure estimates. Environmental Health Perspectives 125 (4): 552–559.

    Google Scholar 

  • Jia, P. 2019. Spatial lifecourse epidemiology. The Lancet Planetary Health 3 (2): e57–e59.

    Google Scholar 

  • Jia, P., W. Dong, S. Yang, Z. Zhan, L. Tu, and S. Lai. 2020a. Spatial lifecourse epidemiology and infectious disease research. Trends in Parasitology 36 (3): 235–238.

    Google Scholar 

  • Jia, P., C. Yu, J.V. Remais, A. Stein, Y. Liu, R.C. Brownson, et al. 2020b. Spatial lifecourse epidemiology reporting standards (ISLE-ReSt) statement. Health & Place 61: 102243.

    Google Scholar 

  • Jin, X. 2020. Observing the distributions and chemistry of major air pollutants (O 3 and PM 2.5) from space: Trends, uncertainties, and health implications. Columbia University: Doctoral dissertation.

    Google Scholar 

  • Jing, M., C. Yanwei, and F. Tingting. 2017. Progress of research on the health impact of people's space-time behavior and environmental pollution exposure. Progress in Geography 36 (10): 1260–1269.

    Google Scholar 

  • Joselyn, J.A., A. Ismail-Zadeh, T. Beer, H. Gupta, M. Kono, U. Shamir, et al. 2019. IUGG in the 21st century. History of Geo-and Space Sciences 10 (1): 73–95.

    Google Scholar 

  • Juarez, P.D., and P. Matthews-Juarez. 2018. Applying an exposome-wide (ExWAS) approach to cancer research. Frontiers in Oncology 8: 313.

    Google Scholar 

  • Kargl, F., R.W. van der Heijden, B. Erb, and C. Bösch. 2019. Privacy in mobile sensing. In Digital Phenotyping and Mobile sensing, 3–12. Cham: Springer.

    Google Scholar 

  • Kilpatrick, N., H. Frumkin, J. Trowbridge, C. Escoffery, R. Geller, L. Rubin, et al. 2002. The environmental history in pediatric practice: A study of pediatricians' attitudes, beliefs, and practices. Environmental Health Perspectives 110 (8): 823–827.

    Google Scholar 

  • Kim, J., M.P. Kwan, M.C. Levenstein, and D.B. Richardson. 2020. How do people perceive the disclosure risk of maps? Examining the perceived disclosure risk of maps and its implications for geoprivacy protection. Cartography and Geographic Information Science: 1–19.

    Google Scholar 

  • Kioumourtzoglou, M.A., J.D. Schwartz, M.G. Weisskopf, S.J. Melly, Y. Wang, F. Dominici, and A. Zanobetti. 2016. Long-term PM2.5 exposure and neurological hospital admissions in the northeastern United States. Environmental Health Perspectives 124 (1): 23–29.

    Google Scholar 

  • Klar, R., and D. Lanzerath. 2020. The ethics of COVID-19 tracking apps–challenges and voluntariness. Research Ethics 16 (3–4): 1–9.

    Google Scholar 

  • Kraak, M. J. (2003, August). The space-time cube revisited from a geovisualization perspective. In Proc. 21st international cartographic conference (pp. 1988-1996). Citeseer.

    Google Scholar 

  • Kretzschmar, M.E., G. Rozhnova, M.C. Bootsma, M. van Boven, J.H. van de Wijgert, and M.J. Bonten. 2020. Impact of delays on effectiveness of contact tracing strategies for COVID-19: A modelling study. The Lancet Public Health 5 (8): e452–e459.

    Google Scholar 

  • Kwan, M.P. 2009. From place-based to people-based exposure measures. Social Science & Medicine 69 (9): 1311–1313.

    Google Scholar 

  • Landrigan, P.J., R. Fuller, N.J. Acosta, O. Adeyi, R. Arnold, A.B. Baldé, et al. 2018. The lancet commission on pollution and health. The Lancet 391 (10119): 462–512.

    Google Scholar 

  • Lary, D.J., F.S. Faruque, N. Malakar, A. Moore, B. Roscoe, Z.L. Adams, and Y. Eggelston. 2014. Estimating the global abundance of ground level presence of particulate matter (PM2.5). Geospatial Health 8: S611–S630.

    Google Scholar 

  • Lasko, K., K.P. Vadrevu, and T.T.N. Nguyen. 2018. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets. PLoS One 13 (5): e0196629.

    Google Scholar 

  • Lee, H. H., I. K. Park, & K. S. Hong. (2008, September). Design and implementation of a mobile devices-based real-time location tracking. In 2008 The Second International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (pp. 178–183). IEEE.

    Google Scholar 

  • Leffers, J.M., C.M. Smith, R. McDermott-Levy, L.K. Resick, M.J. Hanson, L.C. Jordan, et al. 2015. Developing curriculum recommendations for environmental health in nursing. Nurse Educator 40 (3): 139–143.

    Google Scholar 

  • Liang, F. 2020. COVID-19 and health code: How digital platforms tackle the pandemic in China. Social Media+ Society 6 (3): 2056305120947657.

    Google Scholar 

  • Lim, S.S., T. Vos, A.D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, et al. 2012. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380 (9859): 2224–2260.

    Google Scholar 

  • Lioy, P.J., and S.M. Rappaport. 2011. Exposure science and the exposome: An opportunity for coherence in the environmental health sciences [Editorial]. Environmental Health Perspectives 119 (11): A466–A467.

    Google Scholar 

  • Louis, G.M.B., and R. Sundaram. 2012. Exposome: Time for transformative research. Statistics in Medicine 31 (22).

    Google Scholar 

  • Louis, G.M.B., M.M. Smarr, and C.J. Patel. 2017. The exposome research paradigm: An opportunity to understand the environmental basis for human health and disease. Current Environmental Health Reports 4 (1): 89–98.

    Google Scholar 

  • Lozano, R., M. Naghavi, K. Foreman, S. Lim, K. Shibuya, V. Aboyans, et al. 2012. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380 (9859): 2095–2128.

    Google Scholar 

  • Lu, Y., and T.B. Fang. 2015. Examining personal air pollution exposure, intake, and health danger zone using time geography and 3D geovisualization. ISPRS International Journal of Geo-Information 4 (1): 32–46.

    Google Scholar 

  • Ma, J., C. Li, M.P. Kwan, L. Kou, and Y. Chai. 2020. Assessing personal noise exposure and its relationship with mental health in Beijing based on individuals’ space-time behavior. Environment International 139: 105737.

    Google Scholar 

  • Maantay, J.A., and S. McLafferty. 2011. Environmental health and geospatial analysis: An overview. In Geospatial analysis of environmental health, 3–37. Dordrecht: Springer.

    Google Scholar 

  • Mailing, L.J., J.M. Allen, T.W. Buford, C.J. Fields, and J.A. Woods. 2019. Exercise and the gut microbiome: A review of the evidence, potential mechanisms, and implications for human health. Exercise and Sport Sciences Reviews 47 (2): 75–85.

    Google Scholar 

  • Maitre, L., J. De Bont, M. Casas, O. Robinson, G.M. Aasvang, L. Agier, et al. 2018. Human early life Exposome (HELIX) study: A European population-based exposome cohort. BMJ Open 8 (9): e021311.

    Google Scholar 

  • Marshall, L., E. Weir, A. Abelsohn, and M.D. Sanborn. 2002. Identifying and managing adverse environmental health effects: 1. Taking an exposure history. CMAJ 166 (8): 1049–1055.

    Google Scholar 

  • Marti, R., Z. Li, T. Catry, E. Roux, M. Mangeas, P. Handschumacher, et al. 2020. A mapping review on urban landscape factors of dengue retrieved from earth observation data, GIS techniques, and survey questionnaires. Remote Sensing 12 (6): 932.

    Google Scholar 

  • Martin-Sanchez, F., R. Bellazzi, V. Casella, W. Dixon, G. Lopez-Campos, and N. Peek. 2020. Progress in Characterizing the Human Exposome: a Key Step for Precision Medicine. Yearbook of Medical Informatics 29 (1): 115.

    Google Scholar 

  • Mbunge, E. 2020. Integrating emerging technologies into COVID-19 contact tracing: opportunities, challenges and pitfalls. diabetes & metabolic syndrome: Clinical Research & Reviews.

    Google Scholar 

  • McClafferty, H., A. Brooks, S. Dodds, and V. Maizes. 2015. Environmental health: Evaluating an online educational curriculum for healthcare workers. Journal of Preventive Medicine 1: 1–8.

    Google Scholar 

  • McCurdy, L.E., J. Roberts, B. Rogers, R. Love, R. Etzel, J. Paulson, et al. 2004. Incorporating environmental health into pediatric medical and nursing education. Environmental Health Perspectives 112 (17): 1755–1760.

    Google Scholar 

  • McGillivray, M. 2006. Human well-being: Concept and measurement. Springer.

    Google Scholar 

  • McLachlan, S., P. Lucas, K. Dube, G. S. McLachlan, G. A. Hitman, M. Osman, and N. E. Fenton. 2020a. The fundamental limitations of COVID-19 contact tracing methods and how to resolve them with a Bayesian network approach.

    Google Scholar 

  • McLachlan, S., P. Lucas, K. Dube, G. A. Hitman, M. Osman, E. Kyrimi, ... and N. E. Fenton. 2020b. Bluetooth smartphone apps: Are they the most private and effective solution for COVID-19 contact tracing?. arXiv preprint arXiv:2005.06621.

    Google Scholar 

  • Mhawish, A., T. Banerjee, M. Sorek-Hamer, M. Bilal, A.I. Lyapustin, R. Chatfield, and D.M. Broday. 2020. Estimation of high-resolution PM2. 5 over the Indo-Gangetic Plain by fusion of satellite data, meteorology, and land use variables. Environmental Science & Technology 54 (13): 7891–7900.

    Google Scholar 

  • Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-Being: Wetlands and Water Synthesis. Washington, DC: World Resources Institute.

    Google Scholar 

  • Miller, G. 1962. “Airs, waters, and places” in history. Journal of the History of Medicine and Allied Sciences XVII (1): 129–140. https://doi.org/10.1093/jhmas/XVII.1.129.

    Article  Google Scholar 

  • Miller, G.W. 2020. The Exposome: A new paradigm for the environment and health. Academic Press.

    Google Scholar 

  • Miller, G.W., and D.P. Jones. 2014. The nature of nurture: Refining the definition of the exposome. Toxicological Sciences 137 (1): 1–2.

    Google Scholar 

  • Mokrani, H., R. Lounas, M. T. Bennai, D. E.Salhi, & R. Djerbi. 2019. Air quality monitoring using iot: A survey. Paper presented at the 2019 IEEE International Conference on Smart Internet of Things (SmartIoT).

    Google Scholar 

  • Morain, S.A., and A.M. Budge. 2012. Earth observing data for health applications. In Environmental Tracking for Public Health Surveillance, ed. S.A. Morain and A.M. Budge. London: CRC Press, ISBN-10 X, 41558471, 3-18.

    Google Scholar 

  • Morawska, L., P.K. Thai, X. Liu, A. Asumadu-Sakyi, G. Ayoko, A. Bartonova, et al. 2018. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International 116: 286–299.

    Google Scholar 

  • NASA. 2016. NASA selects instruments to study air pollution, Tropical Cyclones. RELEASE 16–025, March 10, 2016. Retrieved 24 December 2020, from http://www.nasa.gov/press-release/nasa-selects-instruments-to-study-air-pollution-tropical-cyclones

  • NASA Earth Science. 2020. NASA Probes Environment, Covid-19 Impacts, Possible Links. Retrieved 24 December 2020, from https://www.nasa.gov/feature/nasa-probes-environment-covid-19-impacts-possible-links

  • Niedzwiecki, M.M., and G.W. Miller. 2017. The exposome paradigm in human health: Lessons from the emory exposome summer course. Environmental Health Perspectives 125 (6): 064502.

    Google Scholar 

  • Niedzwiecki, M.M., D.I. Walker, R. Vermeulen, M. Chadeau-Hyam, D.P. Jones, and G.W. Miller. 2019. The exposome: Molecules to populations. Annual Review of Pharmacology and Toxicology 59: 107–127.

    Google Scholar 

  • NIEHS. 2020. Gene and environment interaction. Retrieved 24 December 2020, from https://www.niehs.nih.gov/health/topics/science/gene-env/index.cfm

  • Oyoshi, K., Y. Mizukami, R. Kakuda, Y. Kobayashi, H. Kai, and T. Tadono. 2019. Japan Aerospace Exploration Agency’s public-health monitoring and analysis platform: A satellite-derived environmental information system supporting epidemiological study. Geospatial Health 14 (1).

    Google Scholar 

  • Pan, X.B. 2020. Application of personal-oriented digital technology in preventing transmission of COVID-19, China. Irish Journal of Medical Science 1971: 1–2.

    Google Scholar 

  • Parselia, E., C. Kontoes, A. Tsouni, C. Hadjichristodoulou, I. Kioutsioukis, G. Magiorkinis, and N.I. Stilianakis. 2019. Satellite Earth observation data in epidemiological modeling of malaria, dengue and West Nile virus: A scoping review. Remote Sensing 11 (16): 1862.

    Google Scholar 

  • Pelletier, S. 2016. Experts see growing importance of adding environmental health content to medical school curricula. AAMC News.

    Google Scholar 

  • Phillips, M.L., T.A. Hall, N.A. Esmen, R. Lynch, and D.L. Johnson. 2001. Use of global positioning system technology to track subject's location during environmental exposure sampling. Journal of Exposure Science & Environmental Epidemiology 11 (3): 207–215.

    Google Scholar 

  • Pickle, L.W., L.A. Waller, and A.B. Lawson. 2005. Current practices in cancer spatial data analysis: A call for guidance. International Journal of Health Geographics 4 (1): 3.

    Google Scholar 

  • Pope, A., Snyder, M., & Mood, A. Committee on enhancing environmental health content in nursing practice, division of health promotion and disease prevention, Institute of Medicine, .(Eds.).(1995). Nursing, health & the environment: Strengthening the relationship to improve the public's health. In: Washington, DC: National Academy Press.

    Google Scholar 

  • Prabu, S., B. Velan, F.V. Jayasudha, P. Visu, and K. Janarthanan. 2020. Mobile technologies for contact tracing and prevention of COVID-19 positive cases: A cross-sectional study. International Journal of Pervasive Computing and Communications.

    Google Scholar 

  • Prior, L., D. Manley, and C.E. Sabel. 2019. Biosocial health geography: New ‘exposomic’ geographies of health and place. Progress in Human Geography 43 (3): 531–552.

    Google Scholar 

  • Pun, V.C., F. Kazemiparkouhi, J. Manjourides, and H.H. Suh. 2017. Long-term PM2. 5 exposure and respiratory, cancer, and cardiovascular mortality in older US adults. American Journal of Epidemiology 186 (8): 961–969.

    Google Scholar 

  • Quezada, H., A.L. Guzmán-Ortiz, H. Díaz-Sánchez, R. Valle-Rios, and J. Aguirre-Hernández. 2017. Omics-based biomarkers: Current status and potential use in the clinic. Boletín Médico Del Hospital Infantil de México (English Edition) 74 (3): 219–226.

    Google Scholar 

  • Rall, D.P., and A.M. Pope. 1995. Environmental medicine: Integrating a missing element into medical education. Washington, D.C: National Academies Press.

    Google Scholar 

  • Rappaport, S.M. 2011. Implications of the exposome for exposure science. Journal of Exposure Science & Environmental Epidemiology 21 (1): 5–9.

    Google Scholar 

  • ———. 2012. Biomarkers intersect with the exposome. Biomarkers 17 (6): 483–489.

    Google Scholar 

  • ———. 2016. Genetic factors are not the major causes of chronic diseases. PLoS One 11 (4): e0154387.

    Google Scholar 

  • ———. 2018. Redefining environmental exposure for disease etiology. NPJ Systems Biology and Applications 4 (1): 1–6.

    Google Scholar 

  • Rappaport, S.M., D.K. Barupal, D. Wishart, P. Vineis, and A. Scalbert. 2014. The blood exposome and its role in discovering causes of disease. Environmental Health Perspectives 122 (8): 769–774.

    Google Scholar 

  • Roberts, J.R., and J.R. Reigart. 2001. Environmental health education in the medical school curriculum. Ambulatory Pediatrics 1 (2): 108–111.

    Google Scholar 

  • Robinson, O., and M. Vrijheid. 2015. The pregnancy exposome. Current Environmental Health Reports 2 (2): 204–213.

    Google Scholar 

  • Saini, J., M. Dutta, and G. Marques. 2020. Indoor air quality monitoring systems based on internet of things: A systematic review. International Journal of Environmental Research and Public Health 17 (14): 4942.

    Google Scholar 

  • Saracci, R. 1997. The World Health Organization needs to reconsider its definition of health. BMJ 314: 1409–1410.

    Google Scholar 

  • Sarigiannis, D.A. 2019. The exposome paradigm in environmental health. In Environmental exposures and human health challenges, 1–29. Hershey: IGI Global.

    Google Scholar 

  • Schmidt, C.W. 2005. Global Earth observations for health. Environmental Health Perspectives 113 (11): 738–740.

    Google Scholar 

  • Shi, L., X. Wu, M.D. Yazdi, D. Braun, Y.A. Awad, Y. Wei, et al. 2020. Long-term effects of PM2.5 on neurological disorders in the American Medicare population: a longitudinal cohort study. The Lancet Planetary Health 4 (12): e557–e565.

    Google Scholar 

  • Sillé, F.C., S. Karakitsios, A. Kleensang, K. Koehler, A. Maertens, G.W. Miller, et al. 2020. The exposome–a new approach for risk assessment. ALTEX-Alternatives to animal experimentation 37 (1): 3–23.

    Google Scholar 

  • Silva, R.A., J.J. West, Y. Zhang, S.C. Anenberg, J.F. Lamarque, D.T. Shindell, et al. 2013. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters 8 (3): 034005.

    Google Scholar 

  • Simon-Nobbe, B., U. Denk, V. Pöll, R. Rid, and M. Breitenbach. 2008. The spectrum of fungal allergy. International Archives of Allergy and Immunology 145 (1): 58–86.

    Google Scholar 

  • Singh, N., T. Banerjee, V. Murari, K. Deboudt, M.F. Khan, R.S. Singh, and M.T. Latif. 2020. Insights into size-segregated particulate chemistry and sources in urban environment over central Indo-Gangetic Plain. Chemosphere 263: 128030.

    Google Scholar 

  • Siroux, V., L. Agier, and R. Slama. 2016. The exposome concept: A challenge and a potential driver for environmental health research. European Respiratory Review 25 (140): 124–129.

    Google Scholar 

  • Sogno, P., C. Traidl-Hoffmann, and C. Kuenzer. 2020. Earth observation data supporting non-communicable disease research: A review. Remote Sensing 12 (16): 2541.

    Google Scholar 

  • Sohraby, K., D. Minoli, and T. Znati. 2007. Wireless sensor networks: Technology, protocols, and applications. Hoboken: John Wiley & Sons.

    Google Scholar 

  • Space Studies Board. 2015. Continuity of NASA earth observations from space: A value framework: National Academies Press. ISBN 978–0–309-37743-0, DOI: https://doi.org/10.17226/21789

  • Stahler, G.J., J. Mennis, and D.A. Baron. 2013. Geospatial technology and the "exposome": New perspectives on addiction. American Journal of Public Health 103 (8): 1354–1356. https://doi.org/10.2105/AJPH.2013.301306.

    Article  Google Scholar 

  • Steckling, N., A. Gotti, S. Bose-O’Reilly, D. Chapizanis, D. Costopoulou, F. De Vocht, et al. 2018. Biomarkers of exposure in environment-wide association studies–opportunities to decode the exposome using human biomonitoring data. Environmental Research 164: 597–624.

    Google Scholar 

  • Stingone, J.A., G.M. Buck Louis, S.F. Nakayama, R.C. Vermeulen, R.K. Kwok, Y. Cui, et al. 2017. Toward greater implementation of the exposome research paradigm within environmental epidemiology. Annual Review of Public Health 38: 315–327.

    Google Scholar 

  • Su, J.G., M. Jerrett, Y.Y. Meng, M. Pickett, and B. Ritz. 2015. Integrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessment. Science of the Total Environment 506: 518–526.

    Google Scholar 

  • Tamura, K., R.C. Puett, J.E. Hart, H.A. Starnes, F. Laden, and P.J. Troped. 2014. Spatial clustering of physical activity and obesity in relation to built environment factors among older women in three US states. BMC Public Health 14 (1): 1–16.

    Google Scholar 

  • Tarantini, L., M. Bonzini, P. Apostoli, V. Pegoraro, V. Bollati, B. Marinelli, et al. 2009. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environmental Health Perspectives 117 (2): 217–222.

    Google Scholar 

  • Tung, E.L., K.A. Cagney, M.E. Peek, and M.H. Chin. 2017. Spatial context and health inequity: Reconfiguring race, place, and poverty. Journal of Urban Health 94 (6): 757–763.

    Google Scholar 

  • Ulrich, C. M., G. Demiris, R. Kennedy, and E. Rothwell. 2020. The ethics of sensor technology use in clinical research. Nursing Outlook

    Google Scholar 

  • Van Donkelaar, A., R.V. Martin, M. Brauer, and B.L. Boys. 2015. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environmental Health Perspectives 123 (2): 135–143.

    Google Scholar 

  • Vermeulen, R., E.L. Schymanski, A.L. Barabási, and G.W. Miller. 2020. The exposome and health: Where chemistry meets biology. Science 367 (6476): 392–396.

    Google Scholar 

  • Viana, J., J.V. Santos, R.M. Neiva, J. Souza, L. Duarte, A.C. Teodoro, and A. Freitas. 2017. Remote sensing in human health: A 10-year bibliometric analysis. Remote Sensing 9 (12): 1225.

    Google Scholar 

  • Vineis, P. 2019. What is the Exposome and how it can help research on air pollution. Emission Control Science and Technology 5 (1): 31–36.

    Google Scholar 

  • Vineis, P., M. Chadeau-Hyam, H. Gmuender, J. Gulliver, Z. Herceg, J. Kleinjans, et al. 2017. The exposome in practice: Design of the EXPOsOMICS project. International Journal of Hygiene and Environmental Health 220 (2): 142–151.

    Google Scholar 

  • Vineis, P., O. Robinson, M. Chadeau-Hyam, A. Dehghan, I. Mudway, and S. Dagnino. 2020. What is new in the exposome? Environment International 143: 105887.

    Google Scholar 

  • Vinikoor-Imler, L.C., J.A. Davis, R.E. Meyer, and T.J. Luben. 2013. Early prenatal exposure to air pollution and its associations with birth defects in a state-wide birth cohort from North Carolina. Birth Defects Research Part A: Clinical and Molecular Teratology 97 (10): 696–701.

    Google Scholar 

  • Voigt, P., and A. Von dem Bussche. 2017. The EU general data protection regulation (gdpr). A Practical Guide. 1st ed. Cham: Springer International Publishing.

    Google Scholar 

  • Vrijheid, M. 2014. The exposome: A new paradigm to study the impact of environment on health. Thorax 69 (9): 876–878.

    Google Scholar 

  • Wagner Filho, J.A., W. Stuerzlinger, and L. Nedel. 2019. Evaluating an immersive space-time cube geovisualization for intuitive trajectory data exploration. IEEE Transactions on Visualization and Computer Graphics 26 (1): 514–524.

    Google Scholar 

  • Walpole, S.C., A. Vyas, J. Maxwell, B.J. Canny, R. Woollard, C. Wellbery, et al. 2017. Building an environmentally accountable medical curriculum through international collaboration. Medical Teacher 39 (10): 1040–1050.

    Google Scholar 

  • Ward, M.H., J.R. Nuckols, S.J. Weigel, S.K. Maxwell, K.P. Cantor, and R.S. Miller. 2000. Identifying populations potentially exposed to agricultural pesticides using remote sensing and a geographic information system. Environmental Health Perspectives 108 (1): 5–12.

    Google Scholar 

  • WHO. 2005. Ecosystems and human well-being: health synthesis: A Report of the Millennium Ecosystem Assessment. Geneva: WHO Press.

    Google Scholar 

  • ———. 2020a. Basic documents: forty-ninth edition (including amendments adopted up to 31 May 2019). Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO. ISBN 978–92–4-000052-0. https://apps.who.int/gb/bd/.

    Google Scholar 

  • ———. 2020b. Social determinants of health. Retrieved 24 December 2020, from https://www.who.int/gender-equity-rights/understanding/sdh-definition/en/

  • Wigbels, L. 2011. Using Earth observation data to improve health in the United States: Accomplishments and future challenges. Center for Strategic & International Studies.

    Google Scholar 

  • Wild, C.P. 2005. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiology, Biomarkers & Prevention 14 (8): 1847–1850.

    Google Scholar 

  • ———. 2012. The exposome: From concept to utility. International Journal of Epidemiology 41 (1): 24–32.

    Google Scholar 

  • Wolffe, A.P., and D. Guschin. 2000. Chromatin structural features and targets that regulate transcription. Journal of Structural Biology 129 (2–3): 102–122.

    Google Scholar 

  • Wu, X., R.C. Nethery, M.B. Sabath, D. Braun, and F. Dominici. 2020a. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Science Advances 6 (45): eabd4049.

    Google Scholar 

  • Wu, J., X. Xie, L. Yang, X. Xu, Y. Cai, T. Wang, and X. Xie. 2020b. Mobile health technology combats COVID-19 in China. Journal of Infection.

    Google Scholar 

  • Ye, Q., J. Zhou, and H. Wu. 2020. Using information technology to manage the COVID-19 pandemic: Development of a technical framework based on practical experience in China. JMIR Medical Informatics 8 (6): e19515.

    Google Scholar 

  • Yi, W.Y., K.M. Lo, T. Mak, K.S. Leung, Y. Leung, and M.L. Meng. 2015. A survey of wireless sensor network based air pollution monitoring systems. Sensors 15 (12): 31392–31427.

    Google Scholar 

  • Yoo, E., C. Rudra, M. Glasgow, and L. Mu. 2015. Geospatial estimation of individual exposure to air pollutants: Moving from static monitoring to activity-based dynamic exposure assessment. Annals of the Association of American Geographers 105 (5): 915–926.

    Google Scholar 

  • Zheng, T., M.H. Bergin, S. Hu, J. Miller, and D.E. Carlson. 2020. Estimating ground-level PM2. 5 using micro-satellite images by a convolutional neural network and random forest approach. Atmospheric Environment 230: 117451.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlay S. Faruque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faruque, F.S. (2022). Geospatial Technology for Human Well-Being and Health: An Overview. In: Faruque, F.S. (eds) Geospatial Technology for Human Well-Being and Health. Springer, Cham. https://doi.org/10.1007/978-3-030-71377-5_1

Download citation

Publish with us

Policies and ethics