Skip to main content

A Dynamic Architecture for Task Assignment and Scheduling for Collaborative Robotic Cells

  • Conference paper
  • First Online:
Human-Friendly Robotics 2020 (HFR 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 18))

Included in the following conference series:

Abstract

In collaborative robotic cells, a human operator and a robot share the workspace in order to execute a common job, consisting of a set of tasks. A proper allocation and scheduling of the tasks for the human and for the robot is crucial for achieving an efficient human-robot collaboration. In order to deal with the dynamic and unpredictable behavior of the human and for allowing the human and the robot to negotiate about the tasks to be executed, a two layers architecture for solving the task allocation and scheduling problem is proposed. The first layer optimally solves the task allocation problem considering nominal execution times. The second layer, which is reactive, adapts online the sequence of tasks to be executed by the robot considering deviations from the nominal behaviors and requests coming from the human and from robot. The proposed architecture is experimentally validated on a collaborative assembly job.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The choice of the specific technique for splitting a job into several tasks is out of the scope of this paper. Several strategies are available in the literature (see, e.g., [19] for assembly tasks.).

  2. 2.

    https://youtu.be/48pH6MpSytM.

References

  1. Villani, V., Pini, F., Leali, F., Secchi, C.: Survey on human-robot collaboration in industrial settings: safety, intuitive interfaces and applications. Mechatronics 55, 248–266 (2018)

    Article  Google Scholar 

  2. Bauer, A., Wollherr, D., Buss, M.: Human-robot collaboration: a survey. Int. J. Humanoid Rob. 5(01), 47–66 (2008)

    Article  Google Scholar 

  3. Landi, C.T., Cheng, Y., Ferraguti, F., Bonfè, M., Secchi, C., Tomizuka, M.: Prediction of human arm target for robot reaching movements. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5950–5957. IEEE (2019)

    Google Scholar 

  4. Malaisé, A., Maurice, P., Colas, F., Charpillet, F., Ivaldi, S.: Activity recognition with multiple wearable sensors for industrial applications (2018)

    Google Scholar 

  5. Dragan, A.D., Lee, K.C., Srinivasa, S.S.: Legibility and predictability of robot motion. In: 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 301–308. IEEE (2013)

    Google Scholar 

  6. Capelli, B., Villani, V., Secchi, C., Sabattini, L.: Understanding multi-robot systems: on the concept of legibility. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7355–7361. IEEE (2019)

    Google Scholar 

  7. Peternel, L., Tsagarakis, N., Caldwell, D., Ajoudani, A.: Adaptation of robot physical behaviour to human fatigue in human-robot co-manipulation. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 489–494. IEEE (2016)

    Google Scholar 

  8. St. Clair, A., Mataric, M.: How robot verbal feedback can improve team performance in human-robot task collaborations. In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, pp. 213–220 (2015)

    Google Scholar 

  9. Villani, V., Sabattini, L., Riggio, G., Secchi, C., Minelli, M., Fantuzzi, C.: A natural infrastructure-less human-robot interaction system. IEEE Rob. Autom. Lett. 2(3), 1640–1647 (2017)

    Article  Google Scholar 

  10. Tsarouchi, P., Matthaiakis, A.S., Makris, S., Chryssolouris, G.: On a human-robot collaboration in an assembly cell. Int. J. Comput. Integr. Manuf 30(6), 580–589 (2017)

    Article  Google Scholar 

  11. Blum, C., Miralles, C.: On solving the assembly line worker assignment and balancing problem via beam search. Comput. Oper. Res. 38(1), 328–339 (2011)

    Article  MathSciNet  Google Scholar 

  12. Sabattini, L., Digani, V., Lucchi, M., Secchi, C., Fantuzzi, C.: Mission assignment for multi-vehicle systems in industrial environments. IFAC-Pap. Line 48(19), 268–273 (2015)

    Article  Google Scholar 

  13. Michalos, G., Spiliotopoulos, J., Makris, S., Chryssolouris, G.: A method for planning human robot shared tasks. CIRP J. Manuf. Sci. Technol 22, 76–90 (2018)

    Article  Google Scholar 

  14. Li, K., Liu, Q., Xu, W., Liu, J., Zhou, Z., Feng, H.: Sequence planning considering human fatigue for human-robot collaboration in disassembly. Procedia CIRP 83, 95–104 (2019)

    Article  Google Scholar 

  15. Ayough, A., Zandieh, M., Farhadi, F.: Balancing, sequencing, and job rotation scheduling of a u-shaped lean cell with dynamic operator performance. Comput. Ind. Eng 143, 106363 (2020)

    Article  Google Scholar 

  16. Lamon, E., De Franco, A., Peternel, L., Ajoudani, A.: A capability-aware role allocation approach to industrial assembly tasks. IEEE Rob. Autom. Lett 4(4), 3378–3385 (2019)

    Article  Google Scholar 

  17. Bogner, K., Pferschy, U., Unterberger, R., Zeiner, H.: Optimised scheduling in human-robot collaboration-a use case in the assembly of printed circuit boards. Int. J. Prod. Res. 56(16), 5522–5540 (2018)

    Article  Google Scholar 

  18. Chen, F., Sekiyama, K., Cannella, F., Fukuda, T.: Optimal subtask allocation for human and robot collaboration within hybrid assembly system. IEEE Trans. Autom. Sci. Eng 11(4), 1065–1075 (2013)

    Article  Google Scholar 

  19. Johannsmeier, L., Haddadin, S.: A hierarchical human-robot interaction-planning framework for task allocation in collaborative industrial assembly processes. IEEE Rob. Autom. Lett. 2(1), 41–48 (2016)

    Article  Google Scholar 

  20. Lou, P., Liu, Q., Zhou, Z., Wang, H., Sun, S.X.: Multi-agent-based proactive-reactive scheduling for a job shop. Int. J. Adv. Manuf. Technol 59(1–4), 311–324 (2012)

    Article  Google Scholar 

  21. Casalino, A., Zanchettin, A.M., Piroddi, L., Rocco, P.: Optimal scheduling of human-robot collaborative assembly operations with time petri nets. IEEE Trans. Autom. Sci. Eng 18, 70–84 (2019)

    Article  Google Scholar 

  22. Vo, N.N., Bobick, A.F.: From stochastic grammar to bayes network: probabilistic parsing of complex activity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2641–2648 (2014)

    Google Scholar 

  23. Maeda, G., Ewerton, M., Neumann, G., Lioutikov, R., Peters, J.: Phase estimation for fast action recognition and trajectory generation in human-robot collaboration. Int. J. Rob. Res. 36(13–14), 1579–1594 (2017)

    Article  Google Scholar 

  24. Maderna, R., Lanfredini, P., Zanchettin, A.M., Rocco, P.: Real-time monitoring of human task advancement. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019), pp. 433–440. IEEE (2019)

    Google Scholar 

  25. Marshall, S.P.: The index of cognitive activity: measuring cognitive workload. In: Proceedings of the IEEE 7th Conference on Human Factors and Power Plants, p. 7. IEEE (2002)

    Google Scholar 

  26. Pettersson, O.: Execution monitoring in robotics: a survey. Rob. Auton. Syst. 53(2), 73–88 (2005)

    Article  Google Scholar 

  27. Dawande, M., Kalagnanam, J., Keskinocak, P., Salman, F.S., Ravi, R.: Approximation algorithms for the multiple knapsack problem with assignment restrictions. J. Comb. Optim. 4(2), 171–186 (2000)

    Article  MathSciNet  Google Scholar 

  28. Tormene, P., Giorgino, T., Quaglini, S., Stefanelli, M.: Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation. Artif. Intell. Med. 45(1), 11–34 (2009)

    Article  Google Scholar 

  29. Dunning, I., Huchette, J., Lubin, M.: Jump: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017)

    Article  MathSciNet  Google Scholar 

  30. Forrest, J., Ralphs, T., Vigerske, S., LouHafer, Kristjansson, B., jpfasano, EdwinStraver, Lubin, M., Santos, H.G., rlougee, Saltzman, M.: coin-or/cbc: Version 2.9.9 (2018). https://doi.org/10.5281/zenodo.1317566

Download references

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 818087 (ROSSINI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pupa, A., Landi, C.T., Bertolani, M., Secchi, C. (2021). A Dynamic Architecture for Task Assignment and Scheduling for Collaborative Robotic Cells. In: Saveriano, M., Renaudo, E., Rodríguez-Sánchez, A., Piater, J. (eds) Human-Friendly Robotics 2020. HFR 2020. Springer Proceedings in Advanced Robotics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-71356-0_6

Download citation

Publish with us

Policies and ethics