Skip to main content

How Do Hybrid Pressure Ventilation Modes Respond to Patient’s Varying Ventilatory Requirements? Insights from Respiratory Bench Simulations

  • Chapter
  • First Online:
Teaching Pearls in Noninvasive Mechanical Ventilation

Abstract

Volume-assured pressure support (VAPS) modes are supposed to automatically adjust pressure to maintain a ventilation target. Auto-adjusted expiratory pressure (auto-EPAP) features were introduced to VAPS modes allowing automatically adjusting the EPAP to maintain upper airway patency. This chapter aims to explain the principles of these new hybrid ventilation modes with ventilatory curves obtained with a previously reported respiratory bench model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

VAPS:

Volume-assured pressure support

References

  1. Rabec C, Emeriaud G, Amadeo A, Fauroux B, Georges M. New modes in non-invasive ventilation. Paediatr Respir Rev. 2016;18:73–84.

    PubMed  Google Scholar 

  2. Piper, A.J. Advances in non-invasive positive airway pressure technology. Respirology [Internet]. 2019 Jul 5 [cited 2019 Jul 17]. https://onlinelibrary.wiley.com/doi/full/10.1111/resp.13631

  3. Zhu K, Farré R, Katz I, Hardy S, Escourrou P. Mimicking a flow-limited human upper airway using a collapsible tube: relationships between flow patterns and pressures in a respiratory model. J Appl Physiol. 2018;125(2):605–14.

    Article  Google Scholar 

  4. Zhu K, Rabec C, Gonzalez-Bermejo J, Hardy S, Aouf S, Escourrou P, et al. Combined effects of leaks, respiratory system properties and upper airway patency on the performance of home ventilators: a bench study. BMC Pulm Med. 2017;17(1):145.

    Article  Google Scholar 

  5. ResMed Ltd. StellarTM series Non-invasive/invasive ventilators clinical guide. 2017.

    Google Scholar 

  6. Respironics Inc. BiPAP A40 user manual. 2013.

    Google Scholar 

  7. Löwenstein Medical Technology GmbH. Prisma Vent 30/30-C/40/50/50-C Ventilateurs: Complément à l’attention des experts des appareils de type WM 110 TD et WM 120 TD. 2018.

    Google Scholar 

  8. Imtmedical Ag. User Manual FlowAnalyserTM version 2.1. 2008.

    Google Scholar 

  9. Selim BJ, Wolfe L, Coleman JM, Dewan NA. Initiation of noninvasive ventilation for sleep related hypoventilation disorders: advanced modes and devices. Chest. 2018;153(1):251–65.

    Article  Google Scholar 

  10. McArdle, N., Rea, C., King, S., Maddison, K., Ramanan, D., Ketheeswaran, S., et al. Treating chronic hypoventilation with automatic adjustable versus fixed EPAP Intelligent Volume-Assured Positive Airway Pressure Support (iVAPS): a randomized controlled trial. Sleep [Internet]. 2017 Oct 1 [cited 2019 Jun 12];40(10). https://academic.oup.com/sleep/article/40/10/zsx136/4082801

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaixian Zhu .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Ventilatory mode, basic presssure, volume and flow waveforms_1 (MOV 30802 kb)

Ventilatory mode, basic presssure, volume and flow waveforms_2 (MOV 11819 kb)

Ventilatory mode, basic presssure, volume and flow waveforms_3 (MOV 18342 kb)

Ventilatory mode, basic presssure, volume and flow waveforms_4 (MOV 15689 kb)

Ventilatory mode, basic presssure, volume and flow waveforms_5 (MOV 14039 kb)

Ventilatory mode, basic presssure, volume and flow waveforms_6 (MOV 19727 kb)

Ventilatory mode, basic presssure, volume and flow waveforms: BIPAP Mode_1 (MOV 20894 kb)

Ventilatory mode, basic presssure, volume and flow waveforms: BIPAP Mode_2 (MOV 58798 kb)

Ventilatory mode, basic presssure, volume and flow waveforms: CPAP Mode_1 (MOV 33981 kb)

Ventilatory mode, basic presssure, volume and flow waveforms: CPAP Mode_2 (MOV 78519 kb)

Ventilatory mode, basic presssure, volume and flow waveforms: CPAP Mode_3 (MOV 21043 kb)

Data 9.1

(PPTX 37 kb)

Data 9.2

(PPTX 37 kb)

Data 9.3

(DOCX 479 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, K., Thevenin, CP., Rabec, C., Hardy, S. (2022). How Do Hybrid Pressure Ventilation Modes Respond to Patient’s Varying Ventilatory Requirements? Insights from Respiratory Bench Simulations. In: Esquinas, A.M. (eds) Teaching Pearls in Noninvasive Mechanical Ventilation. Springer, Cham. https://doi.org/10.1007/978-3-030-71298-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71298-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71297-6

  • Online ISBN: 978-3-030-71298-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics