Skip to main content

Assignment Flow for Order-Constrained OCT Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12544))

Included in the following conference series:

Abstract

At the present time Optical Coherence Tomography (OCT) is among the most commonly used non-invasive imaging methods for the acquisition of large volumetric scans of human retinal tissues and vasculature. Due to tissue-dependent speckle noise, the elaboration of automated segmentation models has become an important task in the field of medical image processing.

We propose a novel, purely data driven geometric approach to order-constrained 3D OCT retinal cell layer segmentation which takes as input data in any metric space. This makes it unbiased and therefore amenable for the detection of local anatomical changes of retinal tissue structure. To demonstrate robustness of the proposed approach we compare four different choices of features on a data set of manually annotated 3D OCT volumes of healthy human retina. The quality of computed segmentations is compared to the state of the art in terms of mean absolute error and Dice similarity coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010)

    Article  Google Scholar 

  2. Antony, B., et al.: Automated 3-D segmentation of intraretinal layers from optic nerve head optical coherence tomography images. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE, vol. 7626, pp. 249–260 (2010)

    Google Scholar 

  3. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive definite matrices. SIAM J. Matrix Anal. Appl. 29(1), 328–347 (2007)

    Article  MathSciNet  Google Scholar 

  4. Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image labeling by assignment. J. Math. Imaging Vis. 58(2), 211–238 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4(1), 27–67 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Censor, Y.A., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  7. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  8. Duan, J., Tench, C., Gottlob, I., Proudlock, F., Bai, L.: New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images. Phys. Med. Biol. 60, 8901–8922 (2015)

    Article  Google Scholar 

  9. Dufour, P.A., et al.: Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints. IEEE Trans. Med. Imaging 32(3), 531–543 (2013)

    Article  Google Scholar 

  10. Fang, L., Cunefare, D., Wang, C., Guymer, R., Li, S., Farsiu, S.: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed. Opt. Expr. 8(5), 2732–2744 (2017)

    Article  Google Scholar 

  11. Garvin, M.K., Abramoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 9, 1436–1447 (2009)

    Article  Google Scholar 

  12. Nicholson, B., Nielsen, P., Saebo, J., Sahay, S.: Exploring tensions of global public good platforms for development: the case of DHIS2. In: Nielsen, P., Kimaro, H.C. (eds.) ICT4D 2019. IAICT, vol. 551, pp. 207–217. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18400-1_17

    Chapter  Google Scholar 

  13. Hashimoto, M., Sklansky, J.: Multiple-order derivatives for detecting local image characteristics. Comput. Vis. Graph. Image Process. 39(1), 28–55 (1987)

    Article  Google Scholar 

  14. He, Y., et al.: Deep learning based topology guaranteed surface and MME segmentation of multiple sclerosis subjects from retinal OCT. Biomed. Opt. Expr. 10(10), 5042–5058 (2019)

    Article  Google Scholar 

  15. Higham, N.: Functions of Matrices: Theory and Computation. SIAM (2008)

    Google Scholar 

  16. Kang, L., Xiaodong, W., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images-a graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 119–134 (2006)

    Article  Google Scholar 

  17. Liu, X., et al.: Semi-supervised automatic segmentation of layer and fluid region in retinal optical coherence tomography images using adversarial learning. IEEE Access 7, 3046–3061 (2019)

    Article  Google Scholar 

  18. Novosel, J., Vermeer, K.A., de Jong, J.H., Wang, Z., van Vliet, L.J.: Joint segmentation of retinal layers and focal lesions in 3-D OCT data of topologically disrupted retinas. IEEE Trans. Med. Imaging 36(6), 1276–1286 (2017)

    Article  Google Scholar 

  19. Rathke, F., Schmidt, S., Schnörr, C.: Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization. Med. Image Anal. 18(5), 781–794 (2014)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Roy, A., et al.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Expr. 8(8), 3627–3642 (2017)

    Article  Google Scholar 

  22. Schnörr, C.: Assignment flows. In: Grohs, P., Holler, M., Weinmann, A. (eds.) Handbook of Variational Methods for Nonlinear Geometric Data, pp. 235–260. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31351-7_8

    Chapter  Google Scholar 

  23. Song, Q., Bai, J., Garvin, M.K., Sonka, M., Buatti, J.M., Wu, X.: Optimal multiple surface segmentation with shape and context priors. IEEE Trans. Med. Imaging 32(2), 376–386 (2013)

    Article  Google Scholar 

  24. Sra, S.: Positive definite matrices and the S-divergence. Proc. Am. Math. Soc. 144(7), 2787–2797 (2016)

    Article  MathSciNet  Google Scholar 

  25. Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_45

    Chapter  Google Scholar 

  26. Yazdanpanah, A., Hamarneh, G., Smith, B.R., Sarunic, M.V.: Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE Trans. Med. Imaging 30(2), 484–496 (2011)

    Article  Google Scholar 

  27. Zeilmann, A., Savarino, F., Petra, S., Schnörr, C.: Geometric numerical integration of the assignment flow. Inverse Probl. 36(3), 034004 (33pp) (2020)

    Google Scholar 

  28. Zern, A., Zeilmann, A., Schnörr, C.: Assignment flows for data labeling on graphs: convergence and stability. CoRR abs/2002.11571 (2020)

    Google Scholar 

Download references

Acknowledgement

We thank Dr. Stefan Schmidt and Julian Weichsel for sharing with us their expertise on OCT sensors, data acquisition and processing. In addition, we thank Prof. Fred Hamprecht and Alberto Bailoni for their guidance in training deep networks for feature extraction from 3D data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrij Sitenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sitenko, D., Boll, B., Schnörr, C. (2021). Assignment Flow for Order-Constrained OCT Segmentation. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recognition. DAGM GCPR 2020. Lecture Notes in Computer Science(), vol 12544. Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71278-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71277-8

  • Online ISBN: 978-3-030-71278-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics