Skip to main content

Proposal-Free Volumetric Instance Segmentation from Latent Single-Instance Masks

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12544))

Included in the following conference series:

Abstract

This work introduces a new proposal-free instance segmentation method that builds on single-instance segmentation masks predicted across the entire image in a sliding window style. In contrast to related approaches, our method concurrently predicts all masks, one for each pixel, and thus resolves any conflict jointly across the entire image. Specifically, predictions from overlapping masks are combined into edge weights of a signed graph that is subsequently partitioned to obtain all final instances concurrently. The result is a parameter-free method that is strongly robust to noise and prioritizes predictions with the highest consensus across overlapping masks. All masks are decoded from a low dimensional latent representation, which results in great memory savings strictly required for applications to large volumetric images. We test our method on the challenging CREMI 2016 neuron segmentation benchmark where it achieves competitive scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For interesting, closely related but independent work, see [10].

  2. 2.

    Among all edges given by the chosen neighborhood structure, we add only 10% of the long-range ones, since the Mutex Watershed was shown to perform optimally in this setup [3, 31].

  3. 3.

    The gradient of the encoded-neighborhood branch is sparse, due to GPU-memory constraints as explained in Sect. 3.2.

References

  1. Andres, B., et al.: Globally optimal closed-surface segmentation for connectomics. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 778–791. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_56

    Chapter  Google Scholar 

  2. Arganda-Carreras, I., et al.: Crowdsourcing the creation of image segmentation algorithms for connectomics. Front. Neuroanat. 9, 142 (2015)

    Article  Google Scholar 

  3. Bailoni, A., Pape, C., Wolf, S., Beier, T., Kreshuk, A., Hamprecht, F.A.: A generalized framework for agglomerative clustering of signed graphs applied to instance segmentation. arXiv preprint arXiv:1906.11713 (2019)

  4. Chopra, S., Rao, M.R.: On the multiway cut polyhedron. Networks 21(1), 51–89 (1991)

    Article  MathSciNet  Google Scholar 

  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  6. Funke, J., Saalfeld, S., Bock, D., Turaga, S., Perlman, E.: Cremi challenge (2016). https://cremi.org. Accessed 15 Nov 2019

  7. Funke, J., et al.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1669–1680 (2018)

    Article  Google Scholar 

  8. Gao, N., et al.: SSAP: Single-shot instance segmentation with affinity pyramid. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  10. Hirsch, P., Mais, L., Kainmueller, D.: PatchPerPix for instance segmentation. In: Proceedings of the European Conference on Computer Vision (2020, in press)

    Google Scholar 

  11. Januszewski, M., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15(8), 605 (2018)

    Article  Google Scholar 

  12. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  13. Kong, S., Fowlkes, C.C.: Recurrent pixel embedding for instance grouping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9018–9028 (2018)

    Google Scholar 

  14. Lee, K., Lu, R., Luther, K., Seung, H.S.: Learning dense voxel embeddings for 3D neuron reconstruction. arXiv preprint arXiv:1909.09872 (2019)

  15. Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the SNEMI3D connectomics challenge. arXiv preprint arXiv:1706.00120 (2017)

  16. Levinkov, E., Kirillov, A., Andres, B.: A comparative study of local search algorithms for correlation clustering. In: Roth, V., Vetter, T. (eds.) GCPR 2017. LNCS, vol. 10496, pp. 103–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66709-6_9

    Chapter  Google Scholar 

  17. Liu, S., Qi, X., Shi, J., Zhang, H., Jia, J.: Multi-scale patch aggregation (MPA) for simultaneous detection and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3141–3149 (2016)

    Google Scholar 

  18. Liu, Y., Yang, S., Li, B., Zhou, W., Xu, J., Li, H., Lu, Y.: Affinity derivation and graph merge for instance segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 708–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_42

    Chapter  Google Scholar 

  19. Meirovitch, Y., et al.: A multi-pass approach to large-scale connectomics. arXiv preprint arXiv:1612.02120 (2016)

  20. Meirovitch, Y., Mi, L., Saribekyan, H., Matveev, A., Rolnick, D., Shavit, N.: Cross-classification clustering: an efficient multi-object tracking technique for 3-D instance segmentation in connectomics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8425–8435 (2019)

    Google Scholar 

  21. Pape, C., Beier, T., Li, P., Jain, V., Bock, D.D., Kreshuk, A.: Solving large multicut problems for connectomics via domain decomposition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1–10 (2017)

    Google Scholar 

  22. Parag, T., et al.: Anisotropic EM segmentation by 3D affinity learning and agglomeration. arXiv preprint arXiv:1707.08935 (2017)

  23. Porzi, L., Bulo, S.R., Colovic, A., Kontschieder, P.: Seamless scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8277–8286 (2019)

    Google Scholar 

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems. pp. 91–99 (2015)

    Google Scholar 

  25. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082 (2014)

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_30

    Chapter  Google Scholar 

  28. Turaga, S.C., Briggman, K.L., Helmstaedter, M., Denk, W., Seung, H.S.: Maximin affinity Learning of Image Segmentation, pp. 1865–1873 (2009)

    Google Scholar 

  29. Welford, B.: Note on a method for calculating corrected sums of squares and products. Technometrics 4(3), 419–420 (1962)

    Article  MathSciNet  Google Scholar 

  30. Wolf, S., et al.: The mutex watershed and its objective: Efficient, parameter-free image partitioning. arXiv preprint arXiv:1904.12654 (2019)

  31. Wolf, S., et al.: The mutex watershed: efficient, parameter-free image partitioning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 571–587. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_34

    Chapter  Google Scholar 

  32. Yarkony, J., Ihler, A., Fowlkes, C.C.: Fast planar correlation clustering for image segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 568–581. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_41

    Chapter  Google Scholar 

  33. Zeng, T., Wu, B., Ji, S.: DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation. Bioinformatics 33(16), 2555–2562 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschft (DFG, German Research Foundation) - Projektnummer 240245660 - SFB 1129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred A. Hamprecht .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4244 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bailoni, A., Pape, C., Wolf, S., Kreshuk, A., Hamprecht, F.A. (2021). Proposal-Free Volumetric Instance Segmentation from Latent Single-Instance Masks. In: Akata, Z., Geiger, A., Sattler, T. (eds) Pattern Recognition. DAGM GCPR 2020. Lecture Notes in Computer Science(), vol 12544. Springer, Cham. https://doi.org/10.1007/978-3-030-71278-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71278-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71277-8

  • Online ISBN: 978-3-030-71278-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics