Skip to main content

Fault Diagnosis for Nonlinear Biological Processes Based on Machine Learning Models

  • Chapter
  • First Online:
Advanced Systems for Biomedical Applications

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 39))

  • 481 Accesses

Abstract

Kernel-based learning techniques have been widely used to monitor and detect faults in biological systems. However, it is well known that the data used in the training phase must be stored and used for validation purposes. This results in a high computation cost when the training data set is very large. To address the above issue, we propose in this paper a novel approach to jointly enhance the detection accuracy and reduce the execution time required for fault detection. The developed approach, so-called, reduced kernel PLS (RKPLS)-based generalized likelihood ratio test (GLRT) aims to reduce the number of training samples to build a new KPLS model. Then, it consists to apply a GLRT to the evaluated residuals obtained from RKPLS model for fault detection purposes. A simulation using a Cad system in E.coli (CSEC) is performed to show how the reduction of the training data set affects the computation time and fault detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Botre, C., Mansouri, M., Nounou, M., Nounou, H., & Karim, M. N. (2016). Kernel PLS-based GLRT method for fault detection of chemical processes. Journal of Loss Prevention in the Process Industries, 43, 212–224.

    Article  CAS  Google Scholar 

  • Chihi, I., & Benrejeb, M. (2018). Online fault detection approach of unpredictable inputs: Application to handwriting system. Complexity, 2018.

    Google Scholar 

  • Cristianini, N., Shawe-Taylor, J., et al. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge Cambridge University Press.

    Google Scholar 

  • Fazai, R., Mansouri, M., Abodayeh, K., Nounou, H., & Nounou, M. (2019). Online reduced kernel pls combined with GLRT for fault detection in chemical systems. Process Safety and Environmental Protection.

    Google Scholar 

  • Gharahbagheri, H., Imtiaz, S., & Khan, F. (2017). Root cause diagnosis of process fault using KPCA and Bayesian network. Industrial & Engineering Chemistry Research, 56(8), 2054–2070.

    Article  CAS  Google Scholar 

  • Godoy, J. L., Zumoffen, D. A., Vega, J. R., & Marchetti, J. L. (2014). New contributions to non-linear process monitoring through kernel partial least squares. Chemometrics and Intelligent Laboratory Systems, 135, 76–89.

    Article  CAS  Google Scholar 

  • Harkat, M.-F., Mansouri, M., Nounou, M. N., & Nounou, H. N. (2019). Fault detection of uncertain chemical processes using interval partial least squares-based generalized likelihood ratio test. Information Sciences, 490, 265–284.

    Article  Google Scholar 

  • Jiao, J., Zhao, N., Wang, G., & Yin, S. (2017). A nonlinear quality-related fault detection approach based on modified kernel partial least squares. ISA Transactions, 66, 275–283.

    Article  Google Scholar 

  • Lall, P., Gupta, P., Kulkarni, M., Panchagade, D., Suhling, J., & Hofmeister, J. (2008). Prognostication and health monitoring of electronics in implantable biological systems. In ASME 2008 International Mechanical Engineering Congress and Exposition (pp. 657–671). American Society of Mechanical Engineers Digital Collection.

    Google Scholar 

  • Lau, C., Ghosh, K., Hussain, M., & Hassan, C. C. (2013). Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS. Chemometrics and Intelligent Laboratory Systems, 120, 1–14.

    Article  CAS  Google Scholar 

  • Li, G., Qin, S. J., & Zhou, D. (2010). Geometric properties of partial least squares for process monitoring. Automatica, 46(1), 204–210.

    Article  Google Scholar 

  • MacGregor, J. F., Jaeckle, C., Kiparissides, C., & Koutoudi, M. (1994). Process monitoring and diagnosis by multiblock pls methods. AIChE Journal, 40(5), 826–838.

    Article  CAS  Google Scholar 

  • Mansouri, M., Baklouti, R., Harkat, M. F., Nounou, M., Nounou, H., & Hamida, A. B. (2018a). Kernel generalized likelihood ratio test for fault detection of biological systems. IEEE Transactions on Nanobioscience, 17(4), 498–506.

    Article  Google Scholar 

  • Mansouri, M., Harkat, M. F., Teh, S. Y., Al-khazraji, A., Nounou, H., & Nounou, M. (2018b). Model-based and data-driven with multiscale sum of squares double EWMA control chart for fault detection in biological systems. Journal of Chemometrics, 32(12), e3068.

    Google Scholar 

  • Mansouri, M., Nounou, H., Harkat, M. F., & Nounou, M. (2017a). Fault detection of chemical processes using improved generalized likelihood ratio test. In 22nd International Conference on Digital Signal Processing (DSP) (pp. 1–5). IEEE.

    Google Scholar 

  • Mansouri, M., Nounou, M. N., & Nounou, H. N. (2017b). Improved statistical fault detection technique and application to biological phenomena modeled by s-systems. IEEE Transactions on Nanobioscience, 16(6), 504–512.

    Article  Google Scholar 

  • Mansouri, M., Nounou, M. N., & Nounou, H. N. (2017c). Multiscale kernel pls-based exponentially weighted-GLRT and its application to fault detection. IEEE Transactions on Emerging Topics in Computational Intelligence, 99, 1–11.

    Google Scholar 

  • Nguyen, V. H., & Golinval, J.-C. (2010). Fault detection based on kernel principal component analysis. Engineering Structures, 32(11), 3683–3691.

    Article  Google Scholar 

  • Rosipal, R., & Trejo, L. J. (2001). Kernel partial least squares regression in reproducing kernel Hilbert space. Journal of Machine Learning Research, 2, 97–123.

    Google Scholar 

  • Sheriff, M. Z., Botre, C., Mansouri, M., Nounou, H., Nounou, M., & Karim, M. N. (2017). Process monitoring using data-based fault detection techniques: Comparative studies. In Fault diagnosis and detection. InTech.

    Google Scholar 

  • Si, Y., Wang, Y., & Zhou, D. (2020). Key-performance-indicator-related process monitoring based on improved kernel partial least squares. IEEE Transactions on Industrial Electronics.

    Google Scholar 

  • Yi, J., Huang, D., He, H., Zhou, W., Han, Q., & Li, T. (2017). A novel framework for fault diagnosis using kernel partial least squares based on an optimal preference matrix. IEEE Transactions on Industrial Electronics, 64(5), 4315–4324.

    Article  Google Scholar 

  • Zhang, Y., Du, W., Fan, Y., & Zhang, L. (2015). Process fault detection using directional kernel partial least squares. Industrial & Engineering Chemistry Research, 54(9), 2509–2518.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Ma, C. (2011). Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS. Chemical Engineering Science, 66(1), 64–72.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Zhang, Y. (2009). Complex process monitoring using modified partial least squares method of independent component regression. Chemometrics and Intelligent Laboratory Systems, 98(2), 143–148.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majdi Mansouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fezai, R., Mansouri, M., Nounou, H., Nounou, M., Messaoud, H. (2021). Fault Diagnosis for Nonlinear Biological Processes Based on Machine Learning Models. In: Kanoun, O., Derbel, N. (eds) Advanced Systems for Biomedical Applications. Smart Sensors, Measurement and Instrumentation, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-71221-1_4

Download citation

Publish with us

Policies and ethics