Skip to main content

Fuzzy Controller for Angular Velocities of an Axisymmetric Aircraft

  • Conference paper
  • First Online:
Advances in Automation II (RusAutoCon 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 729))

Included in the following conference series:

  • 462 Accesses

Abstract

While synthesizing optimal control algorithms for complex objects, the computation load is essential; therefore, deriving control laws in analytical form is important. Since different optimality criteria are used while synthesizing optimal control laws, the effectiveness of the derived algorithms may vary significantly depending on the operating conditions and modes. Thus, optimal synthesizes based on the joint maximum principle allow considering of control actions constraints and deriving an algorithm which is optimal in terms of speed. However, the discrete nature of control actions leads to the sliding mode. Algorithms, which use the predicting model method, based on the Krasovsky’s functional do not result in sliding mode; therefore, resulting accuracy of the control is higher comparing to the joint maximum principle method. However, the range of control actions change is considerable and it will take more time to achieve control objectives. The paper presents an algorithm for fuzzy control of angular velocities of an axisymmetric aircraft, which bases on control actions accumulation and defuzzification. The algorithm combines the joint maximum principle and the predicting model methods. Presented modeling results confirm the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meola, A.: Drone is usage thriving in these three US states. Business Insider. https://www.businessinsider.com/drone-usage-is-thriving-in-these-three-us-states-2016-4 (2016). Accessed 8 Feb 2020

  2. Kostoglotov, A.A., Kostoglotov, A.I., Lazarenko, S.V., et al.: Method of structural-parametric identification of Lagrangian dynamic systems in the processing of measurement information. Meas. Tech. 57, 153–159 (2014)

    Article  Google Scholar 

  3. Taran, V.N., Rybalko, K.K., Dolzhenko, A.M.: Optimal control on the example of the simplest electical circuit. Curr. Dev. Trends Prospects Introduction Innovative Technol. Eng. Educ. Econ. 2(1), 43–48 (2016)

    Google Scholar 

  4. Kostoglotov, A.A., Lazarenko, S.V., Lyaschenko, Z.V.: Control synthesis concerning uncontrolled exposure and unstable state. Bull. Rostov State Univ. Railway Transp. 1, 66–71 (2016)

    Google Scholar 

  5. Taran, V.N., Rybalko, K.K., Dolzhenko, A.M.: Implementing the Volterra-Wiener series in the optimal control theory. Curr. Dev. Trends Prospects Introduction Innovative Technol. Eng. Educ. Econ. 2(1), 38–43 (2016)

    Google Scholar 

  6. Kostoglotov, A.A., Kostoglotov, A.I., Lazarenko, S.V.: Joint maximum principle in the problem of synthesizing an optimal control of nonlinear systems. Autom. Control Comput. Sci. 41, 274–281 (2007)

    Article  Google Scholar 

  7. Kostoglotov, A.A.: Method for synthesis of optimal attitude stabilization algorithm based on joint maximum principle. Autom. Control Comput. Sci. 5(36), 21–28 (2002)

    Google Scholar 

  8. Kostoglotov, A.A., Lazarenko, S.V., Kuznetsov, A.A., et al.: Structural synthesis of discrete adaptive tracking systems based on the combined maximum principle. Vestn. DSTU 17(1), 105–112 (2017)

    Article  Google Scholar 

  9. Kostoglotov, A.A., Lyashchenko, Z.V., Lazarenko, S.V., et al.: Synthesis of adaptive multi-mode control on basis of combined control joint maximum principle. Vestn. RGUPS 3, 124–132 (2016)

    Google Scholar 

  10. Bukov, V.N.: Sintez upravlyayushchikh signalov s pomoshchy prognoziruyushchey modeli v adaptivnoy sisteme upravleniya (Synthesis of the operating signals by means of the predicting model in an adaptive control system). Problemy upravleniya i teorii informatsii (Probl. Manag. Theor. Inf.) 9(5), 329–337 (1980)

    Google Scholar 

  11. Taran, V.N.: Maksimalnos a plausible assessment of a condition of optimum operated system. Autom. Equip. Telemech. 8, 101–108 (1991)

    Google Scholar 

  12. Taran, V.N., Trofimenko, V.N.: Synthesis of an optimum algorithm of angular stabilization by method of the predicting model. Autom. Equip. Telemech. 5, 82–85 (1997)

    Google Scholar 

  13. Taran, V., Trofimenko, V.: Transport systems intellectualization based on analytical control synthesis of angular velocities for the Axisymmetric spacecraft. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds.) IITI 2017. AISC, vol. 680, pp. 154–160. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68324-9_17

    Chapter  Google Scholar 

  14. Kostoglotov, A., Taran, V., Trofimenko, V.: Fuzzy topological approach to a solid control task. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds.) IITI’18 2018. AISC, vol. 874, pp. 373–381. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01818-4_37

    Chapter  Google Scholar 

  15. Kostoglotov, A.A., Taran, V.N., Trofimenko, V.N.: Control algorithms adaptation based on the predictive model and the united maximum principle methods. Vestn. RGUPS 4, 124–132 (2017)

    Google Scholar 

  16. Tikhonravov, M.K., Yatsunsky, I.M., Maximov, GYu., et al.: Osnovy teorii poleta i elementy proyektirovaniya iskusstvennykh sputnikov Zemli (Bases of the Theory of Flight and Elements of Design of Artificial Earth Satellites). Mashinostroeniye, Moscow (1967)

    Google Scholar 

  17. Aleksandrov, A.G., Krasovsky, A.A., et al.: Spravochnik po teorii avtomaticheskogo upravleniya (The Reference Book on the Theory of Automatic Control). Phiz-math. Lit, Moscow (1987)

    Google Scholar 

  18. Yakovlev, V.B., Korablev, U.A., Shestopalov, M.U.: Synthesis of fuzzy controllers. In: Kolesnikov, A.A. (ed.) Contemporary Applied Theory of Control: New Classes of Technical Systems Controllers, pp. 494–538. Publishing house of TRTU, Taganrog (2000)

    Google Scholar 

  19. Zadeh, L.A.: Calculus of fuzzy restriction. In: Fuzzy Sets and its Application to Cognitive and Division Processesed, vol. 4, pp. 1–39 (1975)

    Google Scholar 

  20. MathWorks. https://www.Mathworks.com/heip/fuzzy/examples/using-lookup-table-in-simulink-to-implement-fuzzy-pid-controller.html (2018). Accessed 10 Feb 2020

  21. Piegat, A.: Fuzzy Modeling and Control. Physica-Verl, Heidelberg, New York (2001)

    Book  Google Scholar 

  22. Rutkovskaya, D., Pilinsky, M., Rutkovsky, L.: Neural Networks, Genetic Algorithms and Fuzzy Systems: Translated from Polish Rudinsky ID. Telecom Hotline, Moscow (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Trofimenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trofimenko, V. (2021). Fuzzy Controller for Angular Velocities of an Axisymmetric Aircraft. In: Radionov, A.A., Gasiyarov, V.R. (eds) Advances in Automation II. RusAutoCon 2020. Lecture Notes in Electrical Engineering, vol 729. Springer, Cham. https://doi.org/10.1007/978-3-030-71119-1_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71119-1_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71118-4

  • Online ISBN: 978-3-030-71119-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics