Skip to main content

Real-Time Task Scheduling in Smart Factories Employing Fog Computing

  • Conference paper
  • First Online:
Industrial IoT Technologies and Applications (Industrial IoT 2020)

Abstract

With the development of the new generation of information technology, traditional factories are gradually transforming into smart factories. How to meet the low-latency requirements of task processing in smart factories so as to improve factory production efficiency is still a problem to be studied. For real-time tasks in smart factories, this paper proposes a resource scheduling architecture combined with cloud and fog computing, and establishes a real-time task delay optimization model in smart factories based on the ARQ (Automatic Repeat-request) protocol. For the solution of the optimization model, this paper proposes the GSA-P (Genetic Scheduling Arithmetic With Penalty Function) algorithm to solve the model based on the GSA (Genetic Scheduling Arithmetic) algorithm. Simulation experiments show that when the penalty factor of the GSA-P algorithm is set to 6, the total task processing delay of the GSA-P algorithm is about 80% lower than that of the GSA-R(Genetic Scheduling Arithmetic Reasonable) algorithm, and 66% lower than that of the Joines & Houck method algorithm; In addition, the simulation results show that the combined cloud and fog computing method used in this paper reduces the total task delay by 18% and 7% compared with the traditional cloud computing and pure fog computing methods, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, Y., Luo, X., Chu, X., et al.: Fog-Enabled Intelligent IoT Systems, pp. 29–31. Springer, Cham, Switzerland (2019). https://doi.org/10.1007/978-3-030-23185-9

    Book  Google Scholar 

  2. Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016)

    Article  Google Scholar 

  3. Mourtzis, D., Vlachou, E., Milas, N.: Industrial big data as a result of IoT adoption in manufacturing. In: ES, pp. 290–295 (2016)

    Google Scholar 

  4. Gazis, V., Leonardi, A., Mathioudakis, K., et al.: Components of fog computing in an industrial internet of things context. In: 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking - Workshops (SECON Workshops). IEEE (2015)

    Google Scholar 

  5. Fazio, M., Celesti, A., Ranjan, R., et al.: Open issues in scheduling microservices in the cloud. IEEE Cloud Comput. 3(5), 81–88 (2016)

    Article  Google Scholar 

  6. Chen, N., Yang, Y., Zhang, T., et al.: Fog as a service technology. IEEE Commun. Mag. 1–7 (2018)

    Google Scholar 

  7. Skarlat, O., Nardelli, M., Schulte, S., et al.: Resource provisioning for IoT services in the fog. SOCA 11(4), 427–443 (2016)

    Article  Google Scholar 

  8. Luxiu, Y., Juan, L., Haibo, L.: Tasks scheduling and resource allocation in fog computing based on containers for smart manufacture. IEEE Trans. Industr. Inform. 1–1 (2018)

    Google Scholar 

  9. Gedawy, H., Habak, K., Harras, K., et al.: [IEEE 2018 IEEE International Conference on Edge Computing (EDGE) - San Francisco, CA (2018.7.2–2018.7.7)] 2018 IEEE International Conference on Edge Computing (EDGE) - An Energy-Aware IoT Femtocloud System, pp. 58–65 (2018)

    Google Scholar 

  10. Wei, G., Vasilakos, A.V., Zheng, Y., et al.: A game-theoretic method of fair resource allocation for cloud computing services. J. Supercomputing 54(2), 252–269 (2010)

    Article  Google Scholar 

  11. Zhan, Z.H., Liu, X.F., Gong, Y.J., et al.: Cloud computing resource scheduling and a survey of its evolutionary approaches. ACM Comput. Surv. 47(4), 1–33 (2015)

    Article  Google Scholar 

  12. Miettinen, A.P., Nurminen, J.K.: Energy efficiency of mobile clients in cloud computing. In: Usenix Conference on Hot Topics in Cloud Computing USENIX Association (2010)

    Google Scholar 

  13. Li, Y., Li, J., et al.: The research on ARP protocol based authentication mechanism. In: International Conference on Applied Mathematics, Simulation and Modelling (AMSM) (2016)

    Google Scholar 

  14. Ximing, L., Haoyu, Q., Wen, L.: Genetic algorithm for solving constrained optimization problem. Comput. Eng. 36(014), 147–149 (2010)

    Google Scholar 

  15. Xiao, M., Hassan, M.A., Wei, Q., Chen S.: Help your mobile applications with fogcomputing. In: Seattle, WA, USA : 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking - Workshops (SECON Workshops), pp. 1–6 (2015)

    Google Scholar 

  16. Ichalewicz, Z.: A survey of constraint handling techniques in evolutionary computation methods. In: Proceedings of the 4th Annual Conference on Evolutionary Programming, pp. 135–155. MIT Press, Cambridge (1995)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Science and Technology Commission of Shanghai Municipality under Grant 18511106500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Tuo Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, MT., Ren, TF., Dai, ZM., Feng, XY. (2021). Real-Time Task Scheduling in Smart Factories Employing Fog Computing. In: Peñalver, L., Parra, L. (eds) Industrial IoT Technologies and Applications. Industrial IoT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 365. Springer, Cham. https://doi.org/10.1007/978-3-030-71061-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71061-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71060-6

  • Online ISBN: 978-3-030-71061-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics