Skip to main content

Clustering Method for Isolate Dynamic Points in Image Sequences

  • Conference paper
  • First Online:
Advances in Computer Vision and Computational Biology

Abstract

In this chapter, we propose an optimization of the a-contrario clustering method using the probabilistic Guillaume Khenchaff Measure (MGK) quality technique. A-contrario is used for tracking salient objects in the scene in real time. This method analyzes the data contained in a motion vector, which contains the scattered optical flow accumulated points of interest. The aim of our study is to improve the first results obtained from the Number of False Alarm (NFA) criterion by using MGK to bring together the group of points endowed with a coherent movement of the binary tree. The idea is to isolate dynamic points so that we can use static points in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ammar, S.L. Hégarat-Mascle, M. Vasiliu, R. Reunaud, An a-contrario approach for object detection in video sequence. Int. J. Pure Appl. Math LXXXIX(2), 173–201 (2013)

    MATH  Google Scholar 

  2. A. Gomez, G. Randall, R.G. Von Gioi, A contrario 3d point alignment detection algorithm. IPOL J. Image Proc. Line VII, 399–417 (2017)

    Article  MathSciNet  Google Scholar 

  3. N. Agarwal, C.-W. Chiang, A. Sharma, A study on computer vision techniques for self-driving cars, in International Conference on Frontier Computing, (Springer, 2018), pp. 629–634

    Google Scholar 

  4. A. Buyval, R. Gabdullin, I. Mustafin, I. Shimchik, Realtime vehicle and pedestrian tracking for didi udacity self-driving car challenge, in 2018 IEEE international conference on robotics and automation (ICRA), (2018), pp. 2064–2069

    Chapter  Google Scholar 

  5. B.X. Chen, J.K. Tsotsos, Fast visual object tracking with rotated bounding boxes, in 2019 IEEE/cvf international conference on computer vision (ICCV) workshop, (2019), pp. 629–634

    Google Scholar 

  6. D. Comaniciu, V. Ramesh, P. Meer, Real-time tracking of non-rigid objects using mean shift, in Proc. IEEE conference on computer vision and pattern recognition (CVPR 2000), vol. II, pp. 142–149

    Google Scholar 

  7. D.R. Feno, J. Diatta, A. Totohasina, A basis for the association rules of a valid binary context within the meaning of the mgk quality measure, in Proc. of the 13’eme rencontre de la société francophone de classification, (2006), pp. 105–109

    Google Scholar 

  8. R. Giraud, Y. Berthoumieu, Texture Superpixel Clustering from patch-based nearest neighbor matching, in 27th european signal processing conference (EUSIPCO), (2019), pp. 1–5

    Google Scholar 

  9. Q. Guo, W. Feng, C. Zhou, C.-M. Pun, B. Wu, Structure-regularized compressive tracking with online data-driven sampling. IEEE Trans. Image Proc. 26(12), 5692–5705 (2017)

    Article  MathSciNet  Google Scholar 

  10. Y. Hua, K. Alahari, C. Schmid, Online object tracking with proposal selection, in proceedings of the IEEE international conference on computer vision, (2015), pp. 3092–3100

    Google Scholar 

  11. M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. Čehovin Zajc, T. Vojir, G. Häger, A. Lukežič, A. Eldesokey, G. Fernandez, et al., The seventh visual object tracking vot2019 challenge results. Int. Conf. Comp. Vision (ICCV) Workshop, 639–654 (2019)

    Google Scholar 

  12. Y.-G. Lee, Z. Tang, J.-N. Hwang, Online-learning-based human tracking across nonoverlapping cameras. IEEE Trans. Circ. Syst. Video Technol 28(10), 2870–2883 (2017)

    Article  Google Scholar 

  13. B.D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo vision, in Proc. DARPA Image Understanding Workshop, (1981), pp. 121–130

    Google Scholar 

  14. G. Nebehay, R. Pflugfelder, Clustering of static-adaptive correspondences for deformable object tracking, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2015), pp. 2784–2791

    Google Scholar 

  15. L. Rout, D. Mishra, R.K.S.S. Gorthi, et al., Rotation adaptive visual object tracking with motion consistency, in 2018 IEEE winter conference on applications of computer vision (WACV), (2018), pp. 1047–1055

    Chapter  Google Scholar 

  16. J. Shi, C. Tomasi, Good features to track, in Proc. IEEE international conference on computer vision and pattern recognition (CVPR 1994), (1994), pp. 593–600

    Google Scholar 

  17. Q. Wang, L. Zhang, L. Bertinetto, W. Hu, P.H. Torr, Fast online object tracking and segmentation: a unifying approach. 2019 IEEE Conf. Comp. Vision Pattern Recogn. (CVPR) (2019). https://doi.org/10.1109/CVPR.2019.00142

  18. R. Xu, S.Y. Nikouei, Y. Chen, A. Polunchenko, S. Song, C. Deng, T.R. Faughnan, Realtime human objects tracking for smart surveillance at the edge, in 2018 IEEE international conference on communications (ICC), (2018), pp. 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spinoza, P.N., Rahajaniaina, A., Jessel, JP. (2021). Clustering Method for Isolate Dynamic Points in Image Sequences. In: Arabnia, H.R., Deligiannidis, L., Shouno, H., Tinetti, F.G., Tran, QN. (eds) Advances in Computer Vision and Computational Biology. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-030-71051-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71051-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71050-7

  • Online ISBN: 978-3-030-71051-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics