Skip to main content

Imaging of Cholangiocarcinoma

  • Chapter
  • First Online:
Diagnosis and Management of Cholangiocarcinoma

Abstract

The chapter describes the major non-invasive imaging techniques used in cholangiocarcinoma imaging. These include ultrasound (US), computed tomography (CT), magnetic resonance (MR), as well as nuclear/hybrid imaging, such as positron emission tomography (PET) combined with CT. US is typically used as a first-line screening exam, whereas contrast-enhanced, multiphasic CT and MR are the primary imaging examinations for diagnosis, staging, and surgical planning, due to their excellent performance. PET/CT is becoming increasingly used and has shown additional value in optimizing management in select cases, such as in the detection of lymph node and distal metastatic disease. Imaging utilizes the anatomical classification of cholangiocarcinoma (intrahepatic, perihilar, and distal) along with the major described morphologic growth patterns (mass-forming, periductal infiltrating, and intraductal polypoid); in general, it reflects the heterogeneous presentation of cholangiocarcinoma, with characteristic but nonspecific features that include a metabolically active mass with irregular, peripheral arterial hyperenhancement with gradual centripetal delayed enhancement, as well as biliary ductal dilation with abrupt cutoff at stricture/thickening or mass with normal-caliber distal duct. Herein, we discuss the strengths and limitations of non-invasive imaging modalities in cholangiocarcinoma management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

US:

Ultrasound

CT:

Computed tomography

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

CCA:

Cholangiocarcinoma

iCCA:

Intrahepatic CCA

pCCA:

Perihilar CCA

dCCA:

Distal CCA

References

  1. Lim JH. Cholangiocarcinoma: morphologic classification according to growth pattern and imaging findings. AJR Am J Roentgenol. 2003;181(3):819–27.

    Article  PubMed  Google Scholar 

  2. Seo N, Kim DY, Choi JY. Cross-sectional imaging of intrahepatic cholangiocarcinoma: development, growth, spread, and prognosis. AJR Am J Roentgenol. 2017;209(2):W64–w75.

    Article  PubMed  Google Scholar 

  3. Joo I, Lee JM, Yoon JH. Imaging diagnosis of intrahepatic and perihilar cholangiocarcinoma: recent advances and challenges. Radiology. 2018;288(1):7–13.

    Article  PubMed  Google Scholar 

  4. Ruys AT, van Beem BE, Engelbrecht MR, Bipat S, Stoker J, Van Gulik TM. Radiological staging in patients with hilar cholangiocarcinoma: a systematic review and meta-analysis. Br J Radiol. 2012;85(1017):1255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bloom CM, Langer B, Wilson SR. Role of US in the detection, characterization, and staging of cholangiocarcinoma. Radiographics. 1999;19(5):1199–218.

    Article  CAS  PubMed  Google Scholar 

  6. D'Onofrio M, Crosara S, De Robertis R, Canestrini S, Mucelli RP. Contrast-enhanced ultrasound of focal liver lesions. AJR Am J Roentgenol. 2015;205(1):W56–66.

    Article  PubMed  Google Scholar 

  7. Lyshchik A, Kono Y, Dietrich CF, Jang HJ, Kim TK, Piscaglia F, et al. Contrast-enhanced ultrasound of the liver: technical and lexicon recommendations from the ACR CEUS LI-RADS Working Group. Abdom Radiol (NY). 2018;43(4):861–79.

    Article  Google Scholar 

  8. Wernecke K, Henke L, Vassallo P, von Bassewitz DB, Diederich S, Peters PE, et al. Pathologic explanation for hypoechoic halo seen on sonograms of malignant liver tumors: an in vitro correlative study. AJR Am J Roentgenol. 1992;159(5):1011–6.

    Article  CAS  PubMed  Google Scholar 

  9. Chung YE, Kim MJ, Park YN, Choi JY, Pyo JY, Kim YC, et al. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics. 2009;29(3):683–700.

    Article  PubMed  Google Scholar 

  10. Rubin GD. Computed tomography: revolutionizing the practice of medicine for 40 years. Radiology. 2014;273(2 Suppl):S45–74.

    Article  PubMed  Google Scholar 

  11. American College of Radiology Appropriateness Criteria [Internet]. 2020 [Cited 6/16/2020].

    Google Scholar 

  12. Jee HB, Park MJ, Lee HS, Park M-S, Kim M-J, Chung YE. Is non-contrast CT adequate for the evaluation of hepatic metastasis in patients who cannot receive iodinated contrast media? PLoS One. 2015;10(7):e0134133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lacomis JM, Baron RL, Oliver JH 3rd, Nalesnik MA, Federle MP. Cholangiocarcinoma: delayed CT contrast enhancement patterns. Radiology. 1997;203(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  14. Valls C, Guma A, Puig I, Sanchez A, Andia E, Serrano T, et al. Intrahepatic peripheral cholangiocarcinoma: CT evaluation. Abdom Imaging. 2000;25(5):490–6.

    Article  CAS  PubMed  Google Scholar 

  15. Han JK, Lee JM. Intrahepatic intraductal cholangiocarcinoma. Abdom Imaging. 2004;29(5):558–64.

    Article  CAS  PubMed  Google Scholar 

  16. Han JK, Choi BI, Kim AY, An SK, Lee JW, Kim TK, et al. Cholangiocarcinoma: pictorial essay of CT and cholangiographic findings. Radiographics. 2002;22(1):173–87.

    Article  PubMed  Google Scholar 

  17. Kim JE, Kim HO, Bae K, Cho JM, Choi HC, Choi DS. Differentiation of small intrahepatic mass-forming cholangiocarcinoma from small liver abscess by dual source dual-energy CT quantitative parameters. Eur J Radiol. 2017;92:145–52.

    Article  PubMed  Google Scholar 

  18. Hyodo T, Kumano S, Kushihata F, Okada M, Hirata M, Tsuda T, et al. CT and MR cholangiography: advantages and pitfalls in perioperative evaluation of biliary tree. Br J Radiol. 2012;85(1015):887–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caoili EM, Paulson EK, Heyneman LE, Branch MS, Eubanks WS, Nelson RC. Helical CT cholangiography with three-dimensional volume rendering using an oral biliary contrast agent: feasibility of a novel technique. AJR Am J Roentgenol. 2000;174(2):487–92.

    Article  CAS  PubMed  Google Scholar 

  20. Tabibian JH, Macura SI, O'Hara SP, Fidler JL, Glockner JF, Takahashi N, et al. Micro-computed tomography and nuclear magnetic resonance imaging for noninvasive, live-mouse cholangiography. Lab Invest. 2013;93(6):733–43.

    Article  CAS  PubMed  Google Scholar 

  21. Saad WE, Ginat D. Computed tomography and magnetic resonance cholangiography. Tech Vasc Interv Radiol. 2008;11(2):74–89.

    Article  PubMed  Google Scholar 

  22. Okuda Y, Taura K, Seo S, Yasuchika K, Nitta T, Ogawa K, et al. Usefulness of operative planning based on 3-dimensional CT cholangiography for biliary malignancies. Surgery. 2015;158(5):1261–71.

    Article  PubMed  Google Scholar 

  23. Ogawa M, Ozawa Y, Ohta K, Sekiguchi T, Omata S, Urano M, et al. Usefulness of 3D balanced turbo-field-echo MR sequence evaluating the branching pattern of the intrahepatic bile ducts: comparison with drip infusion CT cholangiography. Abdom Radiol (NY). 2017;42(7):1888–95.

    Article  Google Scholar 

  24. Dilger SKN, Nelson N, Venkatesh SK, Ehman EC, Fidler JL, Fletcher JG, et al. Computed tomography cholangiography using the magnetic resonance contrast agent gadoxetate disodium: a phantom study. Investig Radiol. 2019;54(9):572–9.

    Article  CAS  Google Scholar 

  25. Park HS, Lee JM, Choi JY, Lee MW, Kim HJ, Han JK, et al. Preoperative evaluation of bile duct cancer: MRI combined with MR cholangiopancreatography versus MDCT with direct cholangiography. AJR Am J Roentgenol. 2008;190(2):396–405.

    Article  PubMed  Google Scholar 

  26. Sahani D, Mehta A, Blake M, Prasad S, Harris G, Saini S. Preoperative hepatic vascular evaluation with CT and MR angiography: implications for surgery. Radiographics. 2004;24(5):1367–80.

    Article  PubMed  Google Scholar 

  27. Razumilava N, Gores GJ, Lindor KD. Cancer surveillance in patients with primary sclerosing cholangitis. Hepatology. 2011;54(5):1842–52.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ali AH, Tabibian JH, Nasser-Ghodsi N, Lennon RJ, DeLeon T, Borad MJ, et al. Surveillance for hepatobiliary cancers in patients with primary sclerosing cholangitis. Hepatology. 2018;67(6):2338–51.

    Article  CAS  PubMed  Google Scholar 

  29. Fung BM, Lindor KD, Tabibian JH. Cancer risk in primary sclerosing cholangitis: epidemiology, prevention, and surveillance strategies. World J Gastroenterol. 2019;25(6):659–71.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fung BM, Tabibian JH. Cholangiocarcinoma in patients with primary sclerosing cholangitis. Curr Opin Gastroenterol. 2020;36(2):77–84.

    Article  PubMed  Google Scholar 

  31. Shah AH, Olivero JJ. Gadolinium-induced nephrogenic systemic fibrosis. Methodist Debakey Cardiovasc J. 2017;13(3):172–3.

    PubMed  PubMed Central  Google Scholar 

  32. Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB. Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol. 2017;16(7):564–70.

    Article  PubMed  Google Scholar 

  33. Maetani Y, Itoh K, Watanabe C, Shibata T, Ametani F, Yamabe H, et al. MR imaging of intrahepatic cholangiocarcinoma with pathologic correlation. AJR Am J Roentgenol. 2001;176(6):1499–507.

    Article  CAS  PubMed  Google Scholar 

  34. Olthof SC, Othman A, Clasen S, Schraml C, Nikolaou K, Bongers M. Imaging of cholangiocarcinoma. Visc Med. 2016;32(6):402–10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sainani NI, Catalano OA, Holalkere NS, Zhu AX, Hahn PF, Sahani DV. Cholangiocarcinoma: current and novel imaging techniques. Radiographics. 2008;28(5):1263–87.

    Article  PubMed  Google Scholar 

  36. Campos JT, Sirlin CB, Choi JY. Focal hepatic lesions in Gd-EOB-DTPA enhanced MRI: the atlas. Insights Imaging. 2012;3(5):451–74.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Engelbrecht MR, Katz SS, van Gulik TM, Lameris JS, van Delden OM. Imaging of perihilar cholangiocarcinoma. AJR Am J Roentgenol. 2015;204(4):782–91.

    Article  PubMed  Google Scholar 

  38. Caserta MP, Sakala M, Shen P, Gorden L, Wile G. Presurgical planning for hepatobiliary malignancies: clinical and imaging considerations. Magn Reson Imaging Clin N Am. 2014;22(3):447–65.

    Article  PubMed  Google Scholar 

  39. Qayyum A. MR spectroscopy of the liver: principles and clinical applications. Radiographics. 2009;29(6):1653–64.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sharif AW, Williams HR, Lampejo T, Khan SA, Bansi DS, Westaby D, et al. Metabolic profiling of bile in cholangiocarcinoma using in vitro magnetic resonance spectroscopy. HPB (Oxford). 2010;12(6):396–402.

    Article  Google Scholar 

  41. Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31(6):496–505.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Donswijk ML, Hess S, Mulders T, Lam MG. [18F]Fluorodeoxyglucose PET/computed tomography in gastrointestinal malignancies. PET Clin. 2014;9(4):421–41, v–vi.

    Article  PubMed  Google Scholar 

  43. Lamarca A, Barriuso J, Chander A, McNamara MG, Hubner RA, ÓReilly D, et al. (18)F-fluorodeoxyglucose positron emission tomography ((18)FDG-PET) for patients with biliary tract cancer: systematic review and meta-analysis. J Hepatol. 2019;71(1):115–29.

    Article  PubMed  Google Scholar 

  44. Ma KW, Cheung TT, She WH, Chok KSH, Chan ACY, Dai WC, et al. Diagnostic and prognostic role of 18-FDG PET/CT in the management of resectable biliary tract cancer. World J Surg. 2018;42(3):823–34.

    Article  PubMed  Google Scholar 

  45. Annunziata S, Caldarella C, Pizzuto DA, Galiandro F, Sadeghi R, Giovanella L, et al. Diagnostic accuracy of fluorine-18-fluorodeoxyglucose positron emission tomography in the evaluation of the primary tumor in patients with cholangiocarcinoma: a meta-analysis. Biomed Res Int. 2014;2014:247693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Moon CM, Bang S, Chung JB, Park SW, Song SY, Yun M, et al. Usefulness of 18F-fluorodeoxyglucose positron emission tomography in differential diagnosis and staging of cholangiocarcinomas. J Gastroenterol Hepatol. 2008;23(5):759–65.

    Article  PubMed  Google Scholar 

  47. Lee Y, Yoo IR, Boo SH, Kim H, Park HL, Hyun OJ. The role of F-18 FDG PET/CT in intrahepatic cholangiocarcinoma. Nucl Med Mol Imaging. 2017;51(1):69–78.

    Article  CAS  PubMed  Google Scholar 

  48. Petrowsky H, Wildbrett P, Husarik DB, Hany TF, Tam S, Jochum W, et al. Impact of integrated positron emission tomography and computed tomography on staging and management of gallbladder cancer and cholangiocarcinoma. J Hepatol. 2006;45(1):43–50.

    Article  PubMed  Google Scholar 

  49. Kim JY, Kim MH, Lee TY, Hwang CY, Kim JS, Yun SC, et al. Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol. 2008;103(5):1145–51.

    Article  PubMed  Google Scholar 

  50. Sabate-Llobera A, Gracia-Sanchez L, Reynes-Llompart G, Ramos E, Llado L, Robles J, et al. Differences on metabolic behavior between intra and extrahepatic cholangiocarcinomas at (18)F-FDG-PET/CT: prognostic implication of metabolic parameters and tumor markers. Clin Transl Oncol. 2019;21(3):324–33.

    Article  CAS  PubMed  Google Scholar 

  51. Gaertner FC, Furst S, Schwaiger M. PET/MR: a paradigm shift. Cancer Imaging. 2013;13:36–52.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Paspulati RM, Gupta A. PET/MR imaging in cancers of the gastrointestinal tract. PET Clin. 2016;11(4):403–23.

    Article  PubMed  Google Scholar 

  53. Ferrone C, Goyal L, Qadan M, Gervais D, Sahani DV, Zhu AX, et al. Management implications of fluorodeoxyglucose positron emission tomography/magnetic resonance in untreated intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging. 2020;47(8):1871–84.

    Article  CAS  PubMed  Google Scholar 

  54. Kong E, Chun KA, Cho IH. Quantitative assessment of simultaneous F-18 FDG PET/MRI in patients with various types of hepatic tumors: correlation between glucose metabolism and apparent diffusion coefficient. PLoS One. 2017;12(7):e0180184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lim CH, Moon SH, Cho YS, Choi JY, Lee KH, Hyun SH. Prognostic value of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with combined hepatocellular-cholangiocarcinoma. Eur J Nucl Med Mol Imaging. 2019;46(8):1705–12.

    Article  CAS  PubMed  Google Scholar 

  56. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, et al. (68)Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60(6):801–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chotipanich C, Promteangtrong C, Kunawudhi A, Chanwat R, Sricharunrat T, Suratako S, et al. (11)C-Choline and FDG PET/CT imaging of primary cholangiocarcinoma: a comparative analysis. Asia Ocean J Nucl Med Biol. 2015;3(1):18–25.

    PubMed  PubMed Central  Google Scholar 

  58. Pauwels E, Cleeren F, Bormans G, Deroose CM. Somatostatin receptor PET ligands – the next generation for clinical practice. Am J Nucl Med Mol Imaging. 2018;8(5):311–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee EJ, Chung HW, Jo JH, So Y. Radioembolization for the treatment of primary and metastatic liver cancers. Nucl Med Mol Imaging. 2019;53(6):367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ahn KS, Kang KJ, Kim YH, Kim TS, Song BI, Kim HW, et al. Genetic features associated with (18)F-FDG uptake in intrahepatic cholangiocarcinoma. Ann Surg Treat Res. 2019;96(4):153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karoly Viragh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viragh, K., Patel, M., Mohammad, S., Deshmukh, M., Pahwa, A. (2021). Imaging of Cholangiocarcinoma. In: Tabibian, J.H. (eds) Diagnosis and Management of Cholangiocarcinoma. Springer, Cham. https://doi.org/10.1007/978-3-030-70936-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70936-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70935-8

  • Online ISBN: 978-3-030-70936-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics