Skip to main content

Remote Sensing Scene Classification Based on Effective Feature Learning by Deep Residual Networks

  • Conference paper
  • First Online:
Machine Learning for Networking (MLN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12629))

Included in the following conference series:

  • 738 Accesses

Abstract

Remote sensing image scene interpretation has many applications on land use land covers; thanks to many satellite technologies innovations that generate high-quality images periodically for analysis and interpretation through computer vision techniques. In recent literature, deep learning techniques have demonstrated to be effective in image feature learning thus aiding several computer vision applications on land use land cover. However, most deep learning techniques suffer from problems such as the vanishing gradients, network over-fitting, among other challenges of which the different literature works have attempted to address from varying perspectives. The goal of machine learning in remote sensing is to learn image feature patterns extracted by computer vision techniques for scene classification tasks. Many applications that utilize data from remote sensing are on the surge, this include, aerial surveillance and security, smart farming, among others. These applications require to process satellite image information effectively and reliably for appropriate responses. This research proposes the deep residual feature learning network that is effective in image feature learning which can be utilizable in a networked environment for appropriate decision making processes. The proposed strategy utilizes short-cut connections and mapping functions for deep feature learning. The proposed technique is evaluated on two publicly available remote sensing datasets and it attains superior classification accuracy results of 96.30% and 92.56% respectively on the Ucmerced and Whu-siri datasets, improving the state-of-the-art significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A.: Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogrammetry Remote Sens. 152, 166–177 (2019)

    Article  Google Scholar 

  2. Bazi, Y., Al Rahhal, M.M., Alhichri, H., Alajlan, N.: Simple yet effective fine-tuning of deep CNNs using an auxiliary classification loss for remote sensing scene classification. Remote Sens. 11(24), 2908 (2019)

    Article  Google Scholar 

  3. Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105(10), 1865–1883 (2017)

    Article  Google Scholar 

  4. Xia, G.S., et al.: AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3965–3981 (2017)

    Article  Google Scholar 

  5. Zhou, Q., Zheng, B., Zhu, W., Latecki, L.J.: Multi-scale context for scene labeling via flexible segmentation graph. Pattern Recogn. 59, 312–324 (2016)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Boutaba, R., et al.: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J. Internet Serv. Appl. 9(1), 16 (2018)

    Article  Google Scholar 

  8. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  9. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    Google Scholar 

  10. Tombe, R.: Computer vision for smart farming and sustainable agriculture. In: 2020 IST-Africa Conference (IST-Africa), pp. 1–8. IEEE, May 2020

    Google Scholar 

  11. Wójtowicz, M., Wójtowicz, A., Piekarczyk, J.: Application of remote sensing methods in agriculture. Commun. Biometry Crop Sci. 11(1), 31–50 (2016)

    Google Scholar 

  12. Ghassemian, H.: A review of remote sensing image fusion methods. Inf. Fusion 32, 75–89 (2016)

    Article  Google Scholar 

  13. Bu, S., Han, P., Liu, Z., Han, J.: Scene parsing using inference embedded deep networks. Pattern Recogn. 59, 188–198 (2016)

    Article  Google Scholar 

  14. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  15. Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4151–4160 (2017)

    Google Scholar 

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  17. Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y.: The loss surfaces of multilayer networks. In: Artificial Intelligence and Statistics, pp. 192–204, February 2015

    Google Scholar 

  18. Mishkin, D., Matas, J.: All you need is a good init. arXiv preprint arXiv:1511.06422 (2015)

  19. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning. pp. 1139–1147, February 2013

    Google Scholar 

  20. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM, November 2014

    Google Scholar 

  21. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence, February 2017

    Google Scholar 

  22. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  23. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  24. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  25. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  26. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256, March 2010

    Google Scholar 

  27. Martinez-Covarrubias, J.: Algorithms for large-scale multi-codebook quantization. Doctoral dissertation, University of British Columbia (2018)

    Google Scholar 

  28. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  29. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  30. He, K., Sun, J.: Convolutional neural networks at constrained time cost. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5353–5360 (2015)

    Google Scholar 

  31. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  32. Movshovitz-Attias, Y., Yu, Q., Stumpe, M.C., Shet, V., Arnoud, S., Yatziv, L.: Ontological supervision for fine grained classification of street view storefronts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1693–1702 (2015)

    Google Scholar 

  33. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint arXiv:1505.00387 (2015)

  34. Arora, S., Bhaskara, A., Ge, R., Ma, T.: Provable bounds for learning some deep representations. In: International Conference on Machine Learning, pp. 584–592, January 2014

    Google Scholar 

  35. Wadhwa, A., Madhow, U.: Bottom-up deep learning using the Hebbian principle (2016)

    Google Scholar 

  36. Jegou, H., Perronnin, F., Douze, M., Sánchez, J., Perez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1704–1716 (2011)

    Article  Google Scholar 

  37. Liu, Q., Hang, R., Song, H., Zhu, F., Plaza, J., Plaza, A.: Adaptive deep pyramid matching for remote sensing scene classification. arXiv preprint arXiv:1611.03589 (2016)

  38. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 270–279, November 2010

    Google Scholar 

  39. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image categorization. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, June 2007

    Google Scholar 

  40. Chatfield, K., Lempitsky, V.S., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC, vol. 2, no. 4, p. 8, September 2011

    Google Scholar 

  41. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  42. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, ICML 2010, pp. 807–814 (2010)

    Google Scholar 

  43. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  44. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  45. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  46. Zhao, H.H., Liu, H.: Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition. Granular Comput. 5(3), 411–418 (2020)

    Article  Google Scholar 

  47. Cheriyadat, A.M.: Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 52(1), 439–451 (2013)

    Article  Google Scholar 

  48. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 2169–2178. IEEE, June 2006

    Google Scholar 

  49. Xia, G.S., Yang, W., Delon, J., Gousseau, Y., Sun, H., Maître, H.: Structural high-resolution satellite image indexing, July 2010

    Google Scholar 

  50. Gong, X., Xie, Z., Liu, Y., Shi, X., Zheng, Z.: Deep salient feature based anti-noise transfer network for scene classification of remote sensing imagery. Remote Sens. 10(3), 410 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serestina Viriri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tombe, R., Viriri, S. (2021). Remote Sensing Scene Classification Based on Effective Feature Learning by Deep Residual Networks. In: Renault, É., Boumerdassi, S., Mühlethaler, P. (eds) Machine Learning for Networking. MLN 2020. Lecture Notes in Computer Science(), vol 12629. Springer, Cham. https://doi.org/10.1007/978-3-030-70866-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70866-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70865-8

  • Online ISBN: 978-3-030-70866-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics