Skip to main content

Spin Ice As a Coulomb Liquid: From Emergent Gauge Fields to Magnetic Monopoles

  • Chapter
  • First Online:
Spin Ice

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 197))

  • 1296 Accesses

Abstract

This chapter provides an introduction to the Coulomb phase of spin ice. After reviewing conventional notions of order and disorder, as well as the emergence of quasiparticles, we show how spin ice is special in that it exhibits an emergent gauge field with fractionalised excitations in the form of magnetic monopoles. This is a property of a topological magnetic phase, a Coulomb phase of the corresponding emergent gauge theory, which even harbours irrational magnetic charge and observable ‘Dirac strings’. We provide a broad overview of unusual and novel phenomena arising in spin ice, including the notion of residual entropy, the possibility of generating dimensional reduction to kagome ice via application of a magnetic field, the role of disorder, magnetoelectric phenomena, and various unusual phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As an aside, we note that projective equivalence has effectively also been used in the study of fractional Chern insulators [25,26,27] to obtain dispersionless bands with nonzero Chern number in which interacting electrons at appropriate filling then exhibit a fractional quantum Hall effect.

References

  1. P.M. Chaikin, T.C. Lubensky, J. Stat. Phys. 83, 1263 (1996). https://doi.org/10.1007/BF02179565

  2. F. Wegner, J. Math. Phys. 12, 2259 (1971). https://doi.org/10.1063/1.1665530

  3. P.W. Anderson, Science 177, 393 (1972). https://doi.org/10.1126/science.177.4047.393

  4. P.W. Anderson, Mater. Res. Bull. 8, 153–160 (1973). https://doi.org/10.1016/0025-5408(73)90167-0

  5. P.W. Anderson, Phys. Rev. 102, 1008–1013 (1956). https://doi.org/10.1103/PhysRev.102.1008

  6. J.F. Nagle, J. Math. Phys. 7, 1484 (1966). https://doi.org/10.1063/1.1705058

  7. S.V. Isakov, K.S. Raman, R. Moessner, S.L. Sondhi, Phy. Rev. B 70, 104418 (2004). https://doi.org/10.1103/PhysRevB.70.104418

  8. https://en.wikipedia.org/wiki/Boltzmann’s_entropy_formula

  9. H.W.J. Blote, R.F. Wielinga, W.J. Huiskamp, Physica 43, 549 (1969). https://doi.org/10.1016/0031-8914(69)90187-6

  10. A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, B.S. Shastry, Nature 399, 333–335 (1999). https://doi.org/10.1038/20619

  11. M.B. Geilikman, Zh. Eksp. Teor. Fiz. 66, 1166 (1974); or Sov. Phys. J. Exp. Theor. Phys. 39, 570 (1974). http://www.jetp.ac.ru/cgi-bin/e/index/e/39/3/p570?a=list

  12. J. Stephenson, J. Math. Phys. 11, 420 (1970). https://doi.org/10.1063/1.1665155

  13. L.D.C. Jaubert, M. Haque, R. Moessner, Phys. Rev. Lett. 107, 177202 (2011). https://doi.org/10.1103/PhysRevLett.107.177202

  14. S.V. Isakov, K. Gregor, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 93, 167204 (2004). https://doi.org/10.1103/PhysRevLett.93.167204

  15. M. Hermele, M.P.A. Fisher, L. Balents, Phys. Rev. B 69, 064404 (2004). https://doi.org/10.1103/PhysRevB.69.064404

  16. D.J.P. Morris, D.A. Tennant, S.A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K.C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, R.S. Perry, Science 326, 411 (2009). https://doi.org/10.1126/science.1178868

  17. T. Fennell, P.P. Deen, A.R. Wildes, K. Schmalzl, D. Prabhakaran, A.T. Boothroyd, R.J. Aldus, D.F. McMorrow, S.T. Bramwell, Science 326, 415 (2009). https://doi.org/10.1126/science.1177582

  18. M. Brooks-Bartlett, S.T. Banks, L.D.C. Jaubert, A. Harman-Clarke, P.C.W. Holdsworth, Phys. Rev. X 4, 011007 (2014). https://doi.org/10.1103/PhysRevX.4.011007

  19. H. Kadowaki, N. Doi, Y. Aoki, Y. Tabata, T.J. Sato, J.W. Lynn, K. Matsuhira, Z. Hiroi, J. Phys. Soc. Jpn. 78, 103706 (2009). https://doi.org/10.1143/JPSJ.78.103706

  20. R. Siddharthan, B.S. Shastry, A.P. Ramirez, A. Hayashi, R.J. Cava, S. Rosenkranz, Phys. Rev. Lett. 83, 1854 (1999). https://doi.org/10.1103/PhysRevLett.83.1854

  21. B.C. den Hertog, M.J.P. Gingras, Phys. Rev. Lett. 84, 3430 (2000). https://doi.org/10.1103/PhysRevLett.84.3430

  22. M.J.P. Gingras, B.C. den Hertog, Can. J. Phys. 79, 1339 (2001). https://doi.org/10.1139/p01-099

  23. D.L. Bergman, C. Wu, L. Balents, Phys. Rev. B 78, 125104 (2008). https://doi.org/10.1103/PhysRevB.78.125104

  24. S.V. Isakov, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 95, 217201 (2005). https://doi.org/10.1103/PhysRevLett.95.217201

  25. T. Neupert, L. Santos, C. Chamon, C. Mudry, Phys. Rev. Lett. 106, 236804 (2011). https://doi.org/10.1103/PhysRevLett.106.236804

  26. E. Tang, J.-W. Mei, X.-G. Wen, Phys. Rev. Lett. 106, 236802 (2011). https://doi.org/10.1103/PhysRevLett.106.236802

  27. K. Sun, Z. Gu, H. Katsura, S. Das Sarma, Phys. Rev. Lett. 106, 236803 (2011). https://doi.org/10.1103/PhysRevLett.106.236803

  28. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008). https://doi.org/10.1038/nature06433

  29. D. Pomaranski, L.R. Yaraskavitch, S. Meng, K.A. Ross, H.M.L. Noad, H.A. Dabkowska, B.D. Gaulin, J.B. Kycia, Nat. Phys. 9, 353 (2013). https://doi.org/10.1038/NPHYS2591

  30. R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 105, 166401 (2010). https://doi.org/10.1103/PhysRevLett.105.166401

  31. J.F. Nagle, Chem. Phys. 43, 317 (1979). https://doi.org/10.1016/0301-0104(79)85200-3

  32. P.A.M. Dirac, Proc. R. Soc. Lond. A 133, 60–72 (1931). https://doi.org/10.1098/rspa.1931.0130

  33. K. Matsuhira, Z. Hiroi, T. Tayama, S. Takagi, T. Sakakibara, J. Phys.: Condens. Matter 14, L559–L565 (2002). https://doi.org/10.1088/0953-8984/14/29/101

  34. L.D.C. Jaubert, P.C.W. Holdsworth, Nat. Phys. 5, 258 (2009). https://doi.org/10.1038/NPHYS1227

  35. C. Castelnovo, R. Moessner, S.L. Sondhi, Phys. Rev. B 84, 144435 (2011). https://doi.org/10.1103/PhysRevB.84.144435

  36. S.T. Bramwell, J. Phys.: Condens. Matter 23, 112201 (2011). https://doi.org/10.1088/0953-8984/23/11/112201

  37. L. Onsager, J. Chem. Phys. 2, 599–615 (1934). https://doi.org/10.1063/1.1749541

  38. S.T. Bramwell, S.R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, T. Fennell, Nature 461, 956 (2009). https://doi.org/10.1038/nature08500

  39. V. Kaiser, S.T. Bramwell, P.C.W. Holdsworth, R. Moessner, Phys. Rev. Lett. 115, 037201 (2015). https://doi.org/10.1103/PhysRevLett.115.037201

  40. D.I. Khomskii, Nat. Commun. 3, 904 (2012). https://doi.org/10.1038/ncomms1904

  41. H. Katsura, N. Nagaosa, A.V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005). https://doi.org/10.1103/PhysRevLett.95.057205

  42. I.A. Sergienko, E. Dagotto, Phys. Rev. B 73, 094434 (2006). https://doi.org/10.1103/PhysRevB.73.094434

  43. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006). https://doi.org/10.1103/PhysRevLett.96.067601

  44. A. Sarkar, S. Mukhopadhyay, Phys. Rev. B 90, 165129 (2014). https://doi.org/10.1103/PhysRevB.90.165129

  45. I.V. Aleksandrov, B.V. Lidsky, L.G. Mamsurova, M.G. Neigauz, K.S. Pigal’skii, K.K. Pukhov, N.G. Trusevich, L.G. Shcherbakova, J. Exp. Theor. Phys. 62, 1287 (1985). https://www.jetp.ac.ru/cgi-bin/e/index/e/62/6/p1287?a=list

  46. L.G. Mamsurova, K.S. Pigal’skii, K.K. Pukhov, J. Exp. Theor. Phys. Lett. 43, 755 (1986). https://www.jetpletters.ac.ru/ps/1413/article_21511.shtml

  47. J.P.C. Ruff, Z. Islam, J.P. Clancy, K.A. Ross, H. Nojiri, Y.H. Matsuda, H.A. Dabkowska, A.D. Dabkowski, B.D. Gaulin, Phys. Rev. Lett. 105, 077203 (2010). https://doi.org/10.1103/PhysRevLett.105.077203

  48. T. Fennell, M. Kenzelmann, B. Roessli, H. Mutka, J. Ollivier, M. Ruminy, U. Stuhr, O. Zaharko, L. Bovo, A. Cervellino, M.K. Haas, R.J. Cava, Phys. Rev. Lett. 112, 017203 (2014). https://doi.org/10.1103/PhysRevLett.112.017203

  49. P. Bonville, A. Gukasov, I. Mirebeau, S. Petit, Phys. Rev. B 89, 085115 (2014). https://doi.org/10.1103/PhysRevB

  50. M.J.P. Gingras, B.C. den Hertog, M. Faucher, J.S. Gardner, S.R. Dunsiger, L.J. Chang, B.D. Gaulin, N.P. Raju, J.E. Greedan, Phys. Rev. B 62, 6496 (2000). https://doi.org/10.1103/PhysRevB.89.085115

  51. H. Cao, A. Gukasov, I. Mirebeau, P. Bonville, C. Decorse, G. Dhalenne, Phys. Rev. Lett. 103, 056402 (2009). https://doi.org/10.1103/PhysRevLett.103.056402

  52. T. Fennell, M. Kenzelmann, B. Roessli, M.K. Haas, R.J. Cava, Phys. Rev. Lett. 109, 017201 (2012). https://doi.org/10.1103/PhysRevLett.109.017201

  53. S. Petit, P. Bonville, J. Robert, C. Decorse, I. Mirebeau, Phys. Rev. B 86, 174403 (2012). https://doi.org/10.1103/PhysRevB.86.174403

  54. L.D.C. Jaubert, R. Moessner, Phys. Rev. B 91, 214422 (2015). https://doi.org/10.1103/PhysRevB.91.214422

  55. J.P.C. Ruff, B.D. Gaulin, K.C. Rule, J.S. Gardner, Phys. Rev. B 82, 100401 (2010). https://doi.org/10.1103/PhysRevB.82.100401

  56. A.P. Sazonov, A. Gukasov, I. Mirebeau, P. Bonville, Phys. Rev. B 85, 214420 (2012). https://doi.org/10.1103/PhysRevB.85.214420

  57. I.A. Ryzhkin, J. Exp. Theor. Phys. 101, 481–486 (2005). https://doi.org/10.1134/1.2103216

  58. L.D.C. Jaubert, J.T. Chalker, P.C.W. Holdsworth, R. Moessner, Phys. Rev. Lett. 100, 067207 (2008). https://doi.org/10.1103/PhysRevLett.100.067207

  59. L.D.C. Jaubert, J.T. Chalker, P.C.W. Holdsworth, R. Moessner, Phys. Rev. Lett. 105, 087201 (2010). https://doi.org/10.1103/PhysRevLett.105.087201

  60. Y.-Z. Chou, Y.-J. Kao, Phys. Rev. B 82, 132403 (2010). https://doi.org/10.1103/PhysRevB.82.132403

  61. S. Powell, J.T. Chalker, Phys. Rev. B 78, 024422 (2008). https://doi.org/10.1103/PhysRevB.78.024422

  62. C.S.O. Yokoi, J.F. Nagle, S.R. Salinas, J. Stat. Phys. 44, 729 (1986). https://doi.org/10.1007/BF01011905

  63. S. Powell, Phys. Rev. B 87, 064414 (2013). https://doi.org/10.1103/PhysRevB.87.064414

  64. R. Moessner, Phys. Rev. B 57, R5587 (1998). https://doi.org/10.1103/PhysRevB.57.R5587

  65. R. Moessner, S.L. Sondhi, Phys. Rev. B 68, 064411 (2003). https://doi.org/10.1103/PhysRevB.68.064411

  66. M. Udagawa, M. Ogata, Z. Hiroi, J. Phys. Soc. Jpn. 71, 2365–2368 (2002). https://doi.org/10.1143/JPSJ.71.2365

  67. A. Harman-Clarke, Ph.D. thesis, University College London and Ecole Normale Supérieure de Lyon (2011)

    Google Scholar 

  68. T. Sakakibara, T. Tayama, Z. Hiroi, K. Matsuhira, S. Takagi, Phys. Rev. Lett. 90, 207205 (2003). https://doi.org/10.1103/PhysRevLett.90.207205

  69. G. Sala, M.J. Gutmann, D. Prabhakaran, D. Pomaranski, C. Mitchelitis, J.B. Kycia, D.G. Porter, C. Castelnovo, J.P. Goff, Nat. Mater. 13, 488–493 (2014). https://doi.org/10.1038/NMAT3924

  70. X. Obradors, A. Labarta, A. Isalgué, J. Tejada, Solid State Comm. 65, 189 (1988). https://doi.org/10.1016/0038-1098(88)90885-X

  71. A.P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994). https://doi.org/10.1146/annurev.ms.24.080194.002321

  72. L. Limot, P. Mendels, G. Collin, C. Mondelli, B. Ouladdiaf, H. Mutka, N. Blanchard, M. Mekata, Phys. Rev. B 65, 144447 (2002). https://doi.org/10.1103/PhysRevB.65.144447

  73. O. Cépas, B. Canals, Phys. Rev. B 86, 024434 (2012). https://doi.org/10.1103/PhysRevB.86.024434

  74. G.C. Lau, R.S. Freitas, B.G. Ueland, B.D. Muegge, E.L. Duncan, P. Schiffer, R.J. Cava, Nat. Phys. 2, 249 (2006). https://doi.org/10.1038/nphys270

  75. H.D. Zhou, C.R. Wiebe, Y.J. Jo, L. Balicas, Y. Qiu, J.R.D. Copley, G. Ehlers, P. Fouquet, J.S. Gardner, J. Phys.: Condens. Matter 19, 342201 (2007). https://doi.org/10.1088/0953-8984/19/34/342201

  76. X. Ke, R.S. Freitas, B.G. Ueland, G.C. Lau, M.L. Dahlberg, R.J. Cava, R. Moessner, P. Schiffer, Phys. Rev. Lett. 99, 137203 (2007). https://doi.org/10.1103/PhysRevLett.99.137203

  77. J. Snyder, J.S. Slusky, R.J. Cava, P. Schiffer, Phys. Rev. B 66, 064432 (2002). https://doi.org/10.1103/PhysRevB.66.064432

  78. M. Kajnaková, M. Orendác, A. Orendácová, A. Vlcek, T. Fennell, S.T. Bramwell, J. Magn. Magn. Mater. 272–276, e989–991 (2004). https://doi.org/10.1016/j.jmmm.2003.12.702

  79. G. Ehlers, J.S. Gardner, C.H. Booth, M. Daniel, K.C. Kam, A.K. Cheetham, D. Antonio, H.E. Brooks, A.L. Cornelius, S.T. Bramwell, J. Lago, W. Häussler, N. Rosov, Phys. Rev. B 73, 174429 (2006). https://doi.org/10.1103/PhysRevB.73.174429

  80. T. Lin, X. Ke, M. Thesberg, P. Schiffer, R.G. Melko, M.J.P. Gingras, Phys. Rev. B 90, 214433 (2014). https://doi.org/10.1103/PhysRevB.90.214433

  81. S. Scharffe, O. Breunig, V. Cho, P. Laschitzky, M. Valldor, J.F. Welter, T. Lorenz, Phys. Rev. B 92, 180405(R) (2015). https://doi.org/10.1103/PhysRevB.92.180405

  82. A. Sen, R. Moessner, Phys. Rev. Lett. 114, 247207 (2015). https://doi.org/10.1103/PhysRevLett.114.247207

  83. O. Petrova, R. Moessner, S.L. Sondhi, Phys. Rev. B 92, 100401(R) (2015). https://doi.org/10.1103/PhysRevB.92.100401

  84. K. Kimura, S. Nakatsuji, J.-J. Wen, C. Broholm, M.B. Stone, E. Nishibori, H. Sawa, Nat. Commun. 4, 1934 (2013). https://doi.org/10.1038/ncomms2914

  85. L. Pan, N.J. Laurita, K.A. Ross, B.D. Gaulin, N.P. Armitage, Nat. Phys. 12, 361 (2015). https://doi.org/10.1038/nphys3608

  86. V.F. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University Press, Oxford, 1999). ISBN 9780198518945

    Google Scholar 

  87. L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935). https://doi.org/10.1021/ja01315a102

  88. R. Youngblood, J.D. Axe, B.M. McCoy, Phys. Rev. B 21, 5212 (1980). https://doi.org/10.1103/PhysRevB.21.5212

  89. D.A. Garanin, Benjamin Canals. Phys. Rev. B 59, 443 (1999). https://doi.org/10.1103/PhysRevB.59.443

  90. S.V. Isakov, R. Moessner, S.L. Sondhi, D.A. Tennant, Phys. Rev. B 91, 245152 (2015). https://doi.org/10.1103/PhysRevB.91.245152

  91. J.C. Li, V.M. Nield, D.K. Ross, R.W. Whitworth, C.C. Wilson, D.A. Keen, Philos. Mag. B 69, 1173 (1994). https://doi.org/10.1080/01418639408240187

  92. R. Moessner, J.T. Chalker, Phys. Rev. B 58, 12049 (1998). https://doi.org/10.1103/PhysRevB.58.12049

  93. A. Sen, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 110, 107202 (2013). https://doi.org/10.1103/PhysRevLett.110.107202

  94. O. Benton, L.D.C. Jaubert, H. Yan, N. Shannon, Nat. Commun. 7, 11572 (2016). https://doi.org/10.1038/ncomms11572

  95. R. Moessner, S.L. Sondhi, Phys. Rev. B 68, 184512 (2003). https://doi.org/10.1103/PhysRevB.68.184512

  96. C. Nisoli, R. Moessner, P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013). https://doi.org/10.1103/RevModPhys.85.1473

  97. X. Wan, A. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011). https://doi.org/10.1103/PhysRevB.83.205101

  98. U.K. Rößler, A.N. Bogdanov, C. Pfleiderer, Nature 442, 797–801 (2006). https://doi.org/10.1038/nature05056

  99. P. Milde, D. Köhler, J. Seidel, L.M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. Mühlbauer, C. Pfleiderer, S. Buhrandt, C. Schütte, A. Rosch, Science 340, 1076 (2013). https://doi.org/10.1126/science.1234657

Download references

Acknowledgements

I am very grateful to my numerous collaborators in the work discussed here. It is almost impossible to single out any individuals here, but it was with Claudio Castelnovo, Sergei Isakov and Shivaji Sondhi that much of the conceptual framework presented here was developed. I am also grateful to the editors of this volume, Ludovic Jaubert and Masafumi Udagawa, for much encouragement, support and patience. I also thank the former, along with Peter Holdsworth, for help with the figures, and Maximilian Schulz for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderich Moessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moessner, R. (2021). Spin Ice As a Coulomb Liquid: From Emergent Gauge Fields to Magnetic Monopoles. In: Udagawa, M., Jaubert, L. (eds) Spin Ice. Springer Series in Solid-State Sciences, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-030-70860-3_3

Download citation

Publish with us

Policies and ethics