Skip to main content

Artificial Spin Ice: Beyond Pyrochlores and Magnetism

  • Chapter
  • First Online:
Spin Ice

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 197))

  • 1322 Accesses

Abstract

Artificial spin ices [1,2,3,4] have raised considerable interest for its technological potentials, and as a tailorable medium to investigate collective phenomena in a materials-by-design approach. These metamaterials are made of frustrated arrays of interacting single-domain ferromagnetic nano-islands of about 100 nm size [5]. Figure 15.1 shows the two most representative artificial spin ices, the square [6] and honeycomb [7, 8] arrays; both have been realized experimentally. In this chapter, we review the thermodynamic behaviors and nonequilibrium dynamics of these magnetic nano-arrays from the theoretical point of view. A special focus is the novel emergent phases and phenomena that originate from the magnetic charge degrees of freedom in these metamaterials. Finally, we also discuss recent theoretical proposals of extending ice physics to other artificial systems such as colloidal particles in optical trap arrays and cold atoms in optical lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Nisoli, R. Moessner, P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013). https://doi.org/10.1103/RevModPhys.85.1473

    Article  ADS  Google Scholar 

  2. L.J. Heyderman, R.L. Stamps, J. Phys.: Condens. Matter 25, 363201 (2013). https://doi.org/10.1088/0953-8984/25/36/363201

    Article  Google Scholar 

  3. J. Cumings, L.J. Heyderman, C.H. Marrows, R.L. Stamps, New J. Phys. 16, 075016 (2014). https://doi.org/10.1088/1367-2630/16/7/075016

    Article  ADS  Google Scholar 

  4. I. Gilbert, C. Nisoli, P. Schiffer, Phys. Today 69, 55 (2016). https://doi.org/10.1063/PT.3.3266

    Article  Google Scholar 

  5. See Chapter 16: “Experimental Studies of Artificial Spin Ice” by C. J. Marrows for details about the experimental realizations and characterizations of artificial spin ice

    Google Scholar 

  6. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, V.H. Crespi, P. Schiffer, Nature 439, 303 (2006). https://doi.org/10.1038/nature04447

    Article  ADS  Google Scholar 

  7. M. Tanaka, E. Saitoh, H. Miyajima, T. Yamaoka, Y. Iye, Phys. Rev. B 73, 052411 (2006). https://doi.org/10.1103/PhysRevB.73.052411

    Article  ADS  Google Scholar 

  8. Y. Qi, T. Brintlinger, J. Cumings, Phys. Rev. B 77, 094418 (2008). https://doi.org/10.1103/PhysRevB.77.094418

    Article  ADS  Google Scholar 

  9. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1998). 978-0-471-30932-1

    MATH  Google Scholar 

  10. I.A. Ryzhkin, J. Exp. Theor. Phys. 101, 481 (2005). https://doi.org/10.1134/1.2103216

    Article  ADS  Google Scholar 

  11. C. Castelnovo, R. Moessner, S.L. Sondhi, Nature 451, 42 (2008). https://doi.org/10.1038/nature06433

    Article  ADS  Google Scholar 

  12. O. Tchernyshyov, Nat. Phys. 6, 323 (2010). https://doi.org/10.1038/nphys1658

    Article  Google Scholar 

  13. P. Mellado, O. Petrova, Y. Shen, O. Tchernyshyov, Phys. Rev. Lett. 105, 187206 (2010). https://doi.org/10.1103/PhysRevLett.105.187206

    Article  ADS  Google Scholar 

  14. J. Gadbois, J.-G. Zhu, IEEE Trans. Magn. 31, 3802 (1995). https://doi.org/10.1109/20.489777

    Article  ADS  Google Scholar 

  15. C. Phatak, A.K. Petford-Long, O. Heinonen, M. Tanase, M. De Graef, Phys. Rev. B 83, 174431 (2011). https://doi.org/10.1103/PhysRevB.83.174431

    Article  ADS  Google Scholar 

  16. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000) isbn: 9780521794503

    Google Scholar 

  17. R.D. McMichael, M.J. Donahue, IEEE Trans. Magn. 33, 4167 (1997). https://doi.org/10.1109/20.619698

    Article  ADS  Google Scholar 

  18. O. Tchernyshyov, G.-W. Chern, Phys. Rev. Lett. 95, 197204 (2005). https://doi.org/10.1103/PhysRevLett.95.197204

    Article  ADS  Google Scholar 

  19. G.-W. Chern, D. Clarke, H. Youk, O. Tchernyshyov, in Quantum Magnetism, B. Barbara et al. (eds.), NATO Science for Peace and Security Series B: Physics and Biophysics, pp. 35–48, Springer (Dordrecht, 2008) https://doi.org/10.1007/978-1-4020-8512-3

  20. A. Pushp, T. Phung, C. Rettner, B.P. Hughes, S.-H. Yang, L. Thomas, S.S.P. Parkin, Nat. Phys. 9, 505–511 (2013). https://doi.org/10.1038/nphys2669

    Article  Google Scholar 

  21. L.D. Landau, E.M. Lifshitz, Phys. Z. Sowjet. 8, 153 (1935). https://doi.org/10.1016/B978-0-08-036364-6.50008-9

    Article  Google Scholar 

  22. T.L. Gilbert, Phys. Rev. 100, 1243 (1955). https://doi.org/10.1103/PhysRev.100.1243

    Article  Google Scholar 

  23. Y. Shen, O. Petrova, P. Mellado, S. Daunheimer, J. Cumings, and Oleg Tchernyshyov. New J. Phys. 14, 035022 (2012). https://doi.org/10.1088/1367-2630/14/3/035022

    Article  ADS  Google Scholar 

  24. M. J. Donahue and D. G. Porter, OOMMF National Institute of Standards and Technology, Tech. Rep. NISTIR 6376, Gaithersburg, MD, 1999 http://math.nist.gov/oommf

  25. A. Vansteenkiste, B. Van de Wiele, J. Magn. Magn. Mater. 323, 2585 (2011). https://doi.org/10.1016/j.jmmm.2011.05.037

    Article  ADS  Google Scholar 

  26. S.J. Greaves, H. Muraoka, J. Appl. Phys. 112, 043909 (2012). https://doi.org/10.1063/1.4747910

    Article  ADS  Google Scholar 

  27. C. Phatak, M. Pan, A.K. Petford-Long, S. Hong, M. De Graef, New J. Phys. 14, 075028 (2012). https://doi.org/10.1088/1367-2630/14/7/075028

    Article  ADS  Google Scholar 

  28. M. Beleggia, M. De Graef, J. Magn. Magn. Mater. 285, L1 (2005). https://doi.org/10.1016/j.jmmm.2004.09.004

    Article  Google Scholar 

  29. G.M. Wysin, W.A. Moura-Melo, L.A.S. Mól, A.R. Pereira, J. Phys.: Condens. Matter 24, 296001 (2012). https://doi.org/10.1088/0953-8984/24/29/296001

    Article  Google Scholar 

  30. G.M. Wysin, W.A. Moura-Melo, L.A.S. Mól, A.R. Pereira, New J. Phys. 15, 045029 (2013). https://doi.org/10.1088/1367-2630/15/4/045029

    Article  ADS  Google Scholar 

  31. M. Ewerlin, D. Demirbas, F. Brüssing, O. Petracic, A.A. Ünal, S. Valencia, F. Kronast, H. Zabel, Phys. Rev. Lett. 110, 177209 (2013). https://doi.org/10.1103/PhysRevLett.110.177209

    Article  ADS  Google Scholar 

  32. U.B. Arnalds, M. Ahlberg, M.S. Brewer, V. Kapaklis, ETh. Papaioannou, M. Karimipour, P. Korelis, A. Stein, S. Olafsson, T.P.A. Hase, B. Hjörvarsson, Appl. Phys. Lett. 105, 042409 (2014). https://doi.org/10.1063/1.4891479

    Article  ADS  Google Scholar 

  33. C. Castelnovo, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 104, 107201 (2010). https://doi.org/10.1103/PhysRevLett.104.107201

    Article  ADS  Google Scholar 

  34. A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comp. Phys. 17, 10 (1975). https://doi.org/10.1016/0021-9991(75)90060-1

    Article  ADS  Google Scholar 

  35. A.F. Voter, F. Montalenti, T.C. Germann, Annu. Rev. Mater. Res. 32, 321 (2002). https://doi.org/10.1146/annurev.matsci.32.112601.141541

    Article  Google Scholar 

  36. A. Farhan, P.M. Derlet, A. Kleibert, A. Balan, R.V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, L.J. Heyderman, Phys. Rev. Lett. 111, 057204 (2013). https://doi.org/10.1103/PhysRevLett.111.057204

    Article  ADS  Google Scholar 

  37. A. Farhan, P.M. Derlet, A. Kleibert, A. Balan, R.V. Chopdekar, M. Wyss, L. Anghinolfi, F. Nolting, L.J. Heyderman, Nat. Phys. 9, 375 (2013). https://doi.org/10.1038/NPHYS2613

    Article  Google Scholar 

  38. D. Thonig, S. Reissaus, I. Mertig, J. Henk, J. Phys.: Condens. Matter 26, 266006 (2014). https://doi.org/10.1088/0953-8984/26/26/266006

    Article  Google Scholar 

  39. D. Levis, L.F. Cugliandolo, Europhys. Lett. 97, 30002 (2012). https://doi.org/10.1209/0295-5075/97/30002

    Article  ADS  Google Scholar 

  40. D. Levis, L.F. Cugliandolo, Phys. Rev. B 87, 214302 (2013). https://doi.org/10.1103/PhysRevB.87.214302

    Article  ADS  Google Scholar 

  41. Z. Budrikis, P. Politi, R.L. Stamps, Phys. Rev. Lett. 105, 017201 (2010). https://doi.org/10.1103/PhysRevLett.105.017201

    Article  ADS  Google Scholar 

  42. X. Ke, J. Li, C. Nisoli, P.E. Lammert, W. McConville, R.F. Wang, V.H. Crespi, P. Schiffer, Phys. Rev. Lett. 101, 037205 (2008). https://doi.org/10.1103/PhysRevLett.101.037205

    Article  ADS  Google Scholar 

  43. E. Mengotti, L. J. Heyderman, A. Fraile Rodriguez, A. Bisig, L. Le Guyader, F. Nolting, and H. B. Braun, Phys. Rev. B 78, 144402 (2008) https://doi.org/10.1103/PhysRevB.78.144402

  44. C. Nisoli, R. Wang, J. Li, W.F. McConville, P.E. Lammert, P. Schiffer, V.H. Crespi, Phys. Rev. Lett. 98, 217203 (2007). https://doi.org/10.1103/PhysRevLett.98.217203

    Article  ADS  Google Scholar 

  45. C. Nisoli, J. Li, X. Ke, D. Garand, P. Schiffer, V.H. Crespi, Phys. Rev. Lett. 105, 047205 (2010). https://doi.org/10.1103/PhysRevLett.105.047205

    Article  ADS  Google Scholar 

  46. J.P. Morgan, A. Stein, S. Langridge, C.H. Marrows, Nat. Phys. 7, 75–79 (2011). https://doi.org/10.1038/nphys1853

    Article  Google Scholar 

  47. J.P. Morgan, J. Akerman, A. Stein, C. Phatak, R.M.L. Evans, S. Langridge, C.H. Marrows, Phys. Rev. B 87, 024405 (2013). https://doi.org/10.1103/PhysRevB.87.024405

    Article  ADS  Google Scholar 

  48. C. Nisoli, New J. Phys. 14, 035017 (2012). https://doi.org/10.1088/1367-2630/14/3/035017

    Article  ADS  Google Scholar 

  49. J. Cumings, Nat. Phys. 7, 7 (2011). https://doi.org/10.1038/nphys1898

    Article  Google Scholar 

  50. S. Zhang, I. Gilbert, C. Nisoli, G.-W. Chern, M. J. Erickson, L. O’Brien, C. Leighton, P. E. Lammert, V. H. Crespi, and P. Schiffer, Nature 500, 553 (2013)https://doi.org/10.1038/nature12399

  51. J.M. Porro, A. Bedoya-Pinto, A. Berger, P. Vavassori, New J. Phys. 15, 055012 (2013). https://doi.org/10.1088/1367-2630/15/5/055012

    Article  ADS  Google Scholar 

  52. V. Kapaklis, U.B. Arnalds, A. Farhan, R.V. Chopdekar, A. Balan, A. Scholl, L.J. Heyderman, B. Hjörvarsson, Nat. Nanotech. 9, 514 (2014). https://doi.org/10.1038/NNANO.2014.104

    Article  ADS  Google Scholar 

  53. L.J. Heyderman, Nat. Nanotech. 8, 705 (2013). https://doi.org/10.1038/nnano.2013.193

    Article  ADS  Google Scholar 

  54. J.L. Garcia-Palacios, F.J. Lazaro, Phys. Rev. B 58, 14937 (1998). https://doi.org/10.1103/PhysRevB.58.14937

    Article  ADS  Google Scholar 

  55. R.F.L. Evans, D. Hinzke, U. Atxitia, U. Nowak, R.W. Chantrell, O. Chubykalo-Fesenko, Phys. Rev. B 85, 014433 (2012). https://doi.org/10.1103/PhysRevB.85.014433

    Article  ADS  Google Scholar 

  56. O. Chubykalo, U. Nowak, R.W. Chantrell, D. Garanin, Phys. Rev. B 74, 094436 (2006). https://doi.org/10.1103/PhysRevB.74.094436

    Article  ADS  Google Scholar 

  57. L. Néel, Ann. Geophys. 5, 99 (1949). An English translation is available in Kurti, N., ed. (1988). Selected Works of Louis Néel. New York: Gordon and Breach. pp. 407–427. ISBN 978-2-88124-300-4

    Google Scholar 

  58. G. Möller, R. Moessner, Phys. Rev. Lett. 96, 237202 (2006). https://doi.org/10.1103/PhysRevLett.96.237202

    Article  ADS  Google Scholar 

  59. Y. Perrin, B. Canals, N. Rougemaille, Nature 540, 410 (2016). https://doi.org/10.1038/nature20155

    Article  ADS  Google Scholar 

  60. E.H. Lieb, Phys. Rev. Lett. 18, 692 (1967). https://doi.org/10.1103/PhysRevLett.18.692

    Article  ADS  Google Scholar 

  61. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Dover Publications, Mineola, New-York, 2007). ISBN 10: 0486462714

    Google Scholar 

  62. D. Levis, L.F. Cugliandolo, L. Foini, M. Tarzia, Phys. Rev. Lett. 110, 207206 (2013). https://doi.org/10.1103/PhysRevLett.110.207206

    Article  ADS  Google Scholar 

  63. L. Foini, D. Levis, M. Tarzia, L.F. Cugliandolo, J. Stat. Mech. P0, 2013 (2026). https://doi.org/10.1088/1742-5468/2013/02/P02026

    Article  Google Scholar 

  64. G.-W. Chern, C. Reichhardt, C. Nisoli, Appl. Phys. Lett. 104, 013101 (2014). https://doi.org/10.1063/1.4861118

    Article  ADS  Google Scholar 

  65. A.S. Wills, R. Ballou, C. Lacroix, Phys. Rev. B 66, 144407 (2002). https://doi.org/10.1103/PhysRevB.66.144407

    Article  ADS  Google Scholar 

  66. G.-W. Chern, O. Tchernyshyov, Phil. Trans. Roy. Soc. A 370, 5718 (2012). https://doi.org/10.1098/rsta.2011.0388

    Article  ADS  Google Scholar 

  67. G. Möller, R. Moessner, Phys. Rev. B 80, 140409 (2009). https://doi.org/10.1103/PhysRevB.80.140409

    Article  ADS  Google Scholar 

  68. G.-W. Chern, P. Mellado, O. Tchernyshyov, Phys. Rev. Lett. 106, 207202 (2011). https://doi.org/10.1103/PhysRevLett.106.207202

    Article  ADS  Google Scholar 

  69. R. Higashinaka, H. Fukazawa, Y. Maeno, Phys. Rev. B 68, 014415 (2003). https://doi.org/10.1103/PhysRevB.68.014415

  70. Y. Tabata, H. Kadowaki, K. Matsuhira, Z. Hiroi, N. Aso, E. Ressouche, B. Fak, Phys. Rev. Lett. 97, 257205 (2006). https://doi.org/10.1103/PhysRevLett.97.257205

    Article  ADS  Google Scholar 

  71. M. Udagawa, M. Ogata, Z. Hiroi, J. Phys. Soc. Jpn. 71, 2365 (2002). https://doi.org/10.1143/JPSJ.71.2365

    Article  ADS  Google Scholar 

  72. A. Schumann, B. Sothmann, P. Szary, H. Zabel, Appl. Phys. Lett. 97, 022509 (2010). https://doi.org/10.1063/1.3463482

    Article  ADS  Google Scholar 

  73. N. Rougemaille, F. Montaigne, B. Canals, A. Duluard, D. Lacour, M. Hehn, R. Belkhou, O. Fruchart, S. El Moussaoui, A. Bendounan, F. Maccherozzi, Phys. Rev. Lett. 106, 057209 (2011). https://doi.org/10.1103/PhysRevLett.106.057209

    Article  ADS  Google Scholar 

  74. Z. Budrikis, J.P. Morgan, J. Akerman, A. Stein, P. Politi, S. Langridge, C.H. Marrows, R.L. Stamps, Phys. Rev. Lett. 109, 037203 (2012). https://doi.org/10.1103/PhysRevLett.109.037203

    Article  ADS  Google Scholar 

  75. P. A. M. Dirac, Proc. R. Soc. London, Ser. A 133, 60 (1931) https://doi.org/10.1098/rspa.1931.0130

  76. J.P. Morgan, A. Stein, S. Langridge, C.H. Marrows, New J. Phys. 13, 105002 (2011). https://doi.org/10.1088/1367-2630/13/10/105002

    Article  ADS  Google Scholar 

  77. S.D. Pollard, V. Volkov, Y. Zhu, Phys. Rev. B 85, 180402 (2012). https://doi.org/10.1103/PhysRevB.85.180402

    Article  ADS  Google Scholar 

  78. Z. Budrikis, P. Politi, R.L. Stamps, J. Appl. Phys. 111, 07E109 (2012). https://doi.org/10.1063/1.3671434

    Article  Google Scholar 

  79. Z. Budrikis, P. Politi, R.L. Stamps, Phys. Rev. Lett. 107, 217204 (2011). https://doi.org/10.1103/PhysRevLett.107.217204

    Article  ADS  Google Scholar 

  80. R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002). https://doi.org/10.1103/RevModPhys.74.47

    Article  ADS  MathSciNet  Google Scholar 

  81. Z. Budrikis, K.L. Livesey, J.P. Morgan, J. Akerman, A. Stein, S. Langridge, C.H. Marrows, R.L. Stamps, New J. Phys. 14, 035014 (2012). https://doi.org/10.1088/1367-2630/14/3/035014

    Article  ADS  Google Scholar 

  82. A. Westphalen, A. Schumann, A. Remhof, H. Zabel, M. Karolak, B. Baxevanis, E.Y. Vedmedenko, T. Last, U. Kunze, T. Eimüller, Phys. Rev. B 77, 174407 (2008). https://doi.org/10.1103/PhysRevB.77.174407

    Article  ADS  Google Scholar 

  83. S.A. Daunheimer, O. Petrova, O. Tchernyshyov, J. Cumings, Phys. Rev. Lett. 107, 167201 (2011). https://doi.org/10.1103/PhysRevLett.107.167201

    Article  ADS  Google Scholar 

  84. S. Ladak, D.E. Read, G.K. Perkins, L.F. Cohen, W.R. Branford, Nat. Phys. 6, 359 (2010). https://doi.org/10.1038/nphys1628

    Article  Google Scholar 

  85. E. Mengotti, L.J. Heyderman, A.F. Rodriguez, F. Nolting, R.V. Hügli, H.-B. Braun, Nat. Phys. 7, 68 (2011). https://doi.org/10.1038/nphys1794

    Article  Google Scholar 

  86. K.K. Kohli, A.L. Balk, J. Li, S. Zhang, I. Gilbert, P.E. Lammert, V.H. Crespi, P. Schiffer, N. Samarth, Phys. Rev. B 84, 180412(R) (2011). https://doi.org/10.1103/PhysRevB.84.180412

    Article  ADS  Google Scholar 

  87. G.-W. Chern, C. Reichhardt, and C. J. Olson Reichhardt, New J. Phys. 16, 063051, (2014) https://doi.org/10.1088/1367-2630/16/6/063051

  88. C. J. Olson Reichhardt, G.-W. Chern, A. Libal, and C. Reichhardt, J. Appl. Phys. 117, 172612 (2015) https://doi.org/10.1063/1.4913884

  89. D. Jiles, Introduction to Magnetism and Magnetic Materials (Chapman and Hall, London, 1996). ISBN 9781482238877

    Google Scholar 

  90. J.P. Sethna, K.A. Dahmen, C.R. Myers, Nature 410, 242 (2001). https://doi.org/10.1038/35065675

    Article  ADS  Google Scholar 

  91. G. Durin, S. Zapperi, Phys. Rev. Lett. 84, 4705 (2000). https://doi.org/10.1103/PhysRevLett.84.4705

    Article  ADS  Google Scholar 

  92. A. Schumann, P. Szary, E.Y. Vedmedenko, H. Zabel, New J. Phys. 14, 035015 (2012). https://doi.org/10.1088/1367-2630/14/3/035015

    Article  ADS  Google Scholar 

  93. S. A. Daunheimer, J. Cumings, unpublished data (private communication)

    Google Scholar 

  94. G. Ódor, Rev. Mod. Phys. 76, 663 (2004). https://doi.org/10.1103/RevModPhys.76.663

    Article  ADS  MathSciNet  Google Scholar 

  95. S. Maslov, Phys. Rev. Lett. 74, 562 (1995). https://doi.org/10.1103/PhysRevLett.74.562

    Article  ADS  Google Scholar 

  96. R.V. Hügli, G. Duff, B. O’Conchuir, E. Mengotti, A.F. Rodriguez, F. Nolting, L.J. Heyderman, H.B. Braun, Phil. Trans. Roy. Soc. A 370, 5767 (2012). https://doi.org/10.1098/rsta.2011.0538

    Article  ADS  Google Scholar 

  97. N. Rougemaille, F. Montaigne, B. Canals, M. Hehn, H. Riahi, D. Lacour, J.-C. Toussaint, New J. Phys. 15, 035026 (2013). https://doi.org/10.1088/1367-2630/15/3/035026

    Article  ADS  Google Scholar 

  98. W.R. Branford, S. Ladak, D.E. Read, K. Zeissler, L.F. Cohen, Science 335, 1597 (2012). https://doi.org/10.1088/1367-2630/14/4/045010

    Article  ADS  Google Scholar 

  99. S. Gliga, A. Kakay, R. Hertel, O.G. Heinonen, Phys. Rev. Lett. 110, 117205 (2013). https://doi.org/10.1103/PhysRevLett.110.117205

    Article  ADS  Google Scholar 

  100. V.V. Kruglyak, P.S. Keatley, A. Neudert, R.J. Hicken, J.R. Childress, J.A. Katine, Phys. Rev. Lett. 104, 027201 (2010). https://doi.org/10.1103/PhysRevLett.104.027201

    Article  ADS  Google Scholar 

  101. G. Carlotti, S. Tacchi, G. Gubbiotti, M. Madami, H. Dey, G. Csaba, W. Porod, Appl. Phys. Lett. 117, 17A316 (2015). https://doi.org/10.1063/1.4914878

    Article  Google Scholar 

  102. S. Tacchi, F. Montoncello, M. Madami, G. Gubbiotti, G. Carlotti, L. Giovannini, R. Zivieri, F. Nizzoli, S. Jain, A.O. Adeyeye, N. Singh, Phys. Rev. Lett. 107, 127204 (2011). https://doi.org/10.1103/PhysRevLett.107.127204

    Article  ADS  Google Scholar 

  103. S. Neusser, D. Grundler, Adv. Mater. 21, 2927 (2009). https://doi.org/10.1002/adma.200900809

    Article  Google Scholar 

  104. V.V. Kruglyak, S.O. Demokritov, D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010). https://doi.org/10.1088/0022-3727/43/26/264001

    Article  ADS  Google Scholar 

  105. B. Lenk, H. Ulrichs, F. Garbs, M. Münzenberg, Phys. Rep. 507, 107 (2011). https://doi.org/10.1016/j.physrep.2011.06.003

    Article  ADS  Google Scholar 

  106. L.R. Walker, Phys. Rev. 105, 390 (1957). https://doi.org/10.1103/PhysRev.105.390

    Article  ADS  Google Scholar 

  107. Y. Nambu, Phys. Rev. D 10, 4262 (1974). https://doi.org/10.1103/PhysRevD.10.4262

    Article  ADS  Google Scholar 

  108. R.C. Silva, R.J.C. Lopes, L.A.S. Mól, W.A. Moura-Melo, G.M. Wysin, A.R. Pereira, Phys. Rev. B 87, 014414 (2013). https://doi.org/10.1103/PhysRevB.87.014414

    Article  ADS  Google Scholar 

  109. L.A. Mól, R.L. Silva, R.C. Silva, A.R. Pereira, W.A. Moura-Melo, B.V. Costa, J. Appl. Phys. 106, 063913 (2009). https://doi.org/10.1063/1.3224870

    Article  ADS  Google Scholar 

  110. L.A.S. Mól, W.A. Moura-Melo, A.R. Pereira, Phys. Rev. B 82, 054434 (2010). https://doi.org/10.1103/PhysRevB.82.054434

    Article  ADS  Google Scholar 

  111. R.C. Silva, F.S. Nascimento, L.A.S. Mól, W.A. Moura-Melo, A.R. Pereira, New J. Phys. 14, 015008 (2012). https://doi.org/10.1088/1367-2630/14/1/015008

    Article  ADS  Google Scholar 

  112. G.-W. Chern, P. Mellado, Europhys. Lett. 114, 37004 (2016). https://doi.org/10.1209/0295-5075/114/37004

    Article  ADS  Google Scholar 

  113. L.D. Landau, Phys. Z. Sowjetunion 3, 644 (1933)

    Google Scholar 

  114. I. Gilbert, G.-W. Chern, S. Zhang, L. O’Brien, B. Fore, C. Nisoli, P. Schiffer, Nat. Phys. 10, 670 (2014). https://doi.org/10.1038/nphys3037

  115. A. Farhan, A. Scholl, C.F. Petersen, L. Anghinolfi, C. Wuth, S. Dhuey, R.V. Chopdekar, P. Mellado, M.J. Alava, S. van Dijken, Nat. Commun. 7, 12635 (2016). https://doi.org/10.1038/ncomms12635

    Article  ADS  Google Scholar 

  116. S. Ladak, D.E. Read, T. Tyliszczak, W.R. Branford, L.F. Cohen, New J. Phys. 13, 023023 (2011). https://doi.org/10.1088/1367-2630/13/2/023023

    Article  ADS  Google Scholar 

  117. S. Ladak, D.E. Read, W.R. Branford, L.F. Cohen, New J. Phys. 13, 063032 (2011). https://doi.org/10.1088/1367-2630/13/6/063032

    Article  ADS  Google Scholar 

  118. S. Ladak, S.K. Walton, K. Zeissler, T. Tyliszczak, D.E. Read, W.R. Branford, L.F. Cohen, New J. Phys. 14, 045010 (2012). https://doi.org/10.1088/1367-2630/14/4/045010

    Article  ADS  Google Scholar 

  119. S.-K. Kim, J. Phys. D: Appl. Phys. 43, 264004 (2010). https://doi.org/10.1088/0022-3727/43/26/264004

    Article  ADS  Google Scholar 

  120. L.A.S. Mòl, A.R. Pereira, W.A. Moura-Melo, Phys. Rev. B 85, 184410 (2012). https://doi.org/10.1103/PhysRevB.85.184410

    Article  ADS  Google Scholar 

  121. S. Zhang, J. Li, J. Bartell, X. Ke, C. Nisoli, P.E. Lammert, V.H. Crespi, P. Schiffer, Phys. Rev. Lett. 107, 117204 (2011). https://doi.org/10.1103/PhysRevLett.107.117204

    Article  ADS  Google Scholar 

  122. J. Li, X. Ke, S. Zhang, D. Garand, C. Nisoli, P. Lammert, V.H. Crespi, P. Schiffer, Phys. Rev. B 81, 092406 (2010). https://doi.org/10.1103/PhysRevB.81.092406

    Article  ADS  Google Scholar 

  123. S. Zhang, J. Li, I. Gilbert, J. Bartell, M.J. Erickson, Y. Pan, P.E. Lammert, C. Nisoli, K.K. Kohli, R. Misra, V.H. Crespi, N. Samarth, C. Leighton, P. Schiffer, Phys. Rev. Lett. 109, 087201 (2012). https://doi.org/10.1103/PhysRevLett.109.087201

    Article  ADS  Google Scholar 

  124. V.S. Bhat, J. Sklenar, B. Farmer, J. Woods, J.T. Hastings, S.J. Lee, J.B. Ketterson, L.E. De Long, Phys. Rev. Lett. 111, 077201 (2013). https://doi.org/10.1103/PhysRevLett.111.077201

    Article  ADS  Google Scholar 

  125. M.J. Morrison, T.R. Nelson, C. Nisoli, New J. Phys. 15, 045009 (2013). https://doi.org/10.1088/1367-2630/15/4/045009

    Article  ADS  Google Scholar 

  126. G.-W. Chern, M.J. Morrison, C. Nisoli, Phys. Rev. Lett. 111, 177201 (2013). https://doi.org/10.1103/PhysRevLett.111.177201

    Article  ADS  Google Scholar 

  127. R.L. Stamps, Nat. Phys. 10, 623 (2014). https://doi.org/10.1038/nphys3072

    Article  Google Scholar 

  128. J.D. Bernal, R.H. Fowler, J. Chem. Phys. 1, 515 (1933). https://doi.org/10.1063/1.1749327

    Article  ADS  Google Scholar 

  129. A. Libál, C. Reichhardt, C. J. Olson Reichhardt, Phys. Rev. Lett. 97, 228302 (2006) https://doi.org/10.1103/PhysRevLett.97.228302

  130. C. J. Olson Reichhardt, A. Libál, and C. Reichhardt, New J. Phys. 14, 025006 (2012) https://doi.org/10.1088/1367-2630/14/2/025006

  131. A. Libál, C. J. Olson Reichhardt, and C. Reichhardt, Phys. Rev. Lett. 102, 237004 (2009) https://doi.org/10.1103/PhysRevLett.102.237004

  132. M.L. Latimer, G.R. Berdiyorov, Z.L. Xiao, F.M. Peeters, W.K. Kwok, Phys. Rev. Lett. 111, 067001 (2013). https://doi.org/10.1103/PhysRevLett.111.067001

    Article  ADS  Google Scholar 

  133. A. Libal, C. J. Olson Reichhardt, C. Reichhardt, New J. Phys. 17, 103010 (2016) https://doi.org/10.1088/1367-2630/17/10/103010

  134. F. Ma, C. Reichhardt, W. Gan, C. J. Olson Reichhardt, and W. S. Lew, Phys. Rev. B 94, 144405 (2016) https://doi.org/10.1103/PhysRevB.94.144405

  135. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008). https://doi.org/10.1103/RevModPhys.80.885

    Article  ADS  Google Scholar 

  136. A.W. Glaetzle, M. Dalmonte, R. Nath, I. Rousochatzakis, R. Moessner, P. Zoller, Phys. Rev. X 4, 041037 (2014). https://doi.org/10.1103/PhysRevX.4.041037

    Article  Google Scholar 

  137. T.G. Walker, M. Saffman, Phys. Rev. A 77, 032723 (2008). https://doi.org/10.1103/PhysRevA.77.032723

    Article  ADS  Google Scholar 

  138. T. Müller, S. Fölling, A. Widera, I. Bloch, Phys. Rev. Lett. 99, 200405 (2007). https://doi.org/10.1103/PhysRevLett.99.200405

    Article  ADS  Google Scholar 

  139. G. Wirth, M. Ölschläger, A. Hemmerich, Nat. Phys. 7, 147 (2011). https://doi.org/10.1038/nphys1857

    Article  Google Scholar 

  140. P. Soltan-Panahi, D.-S. Lühmann, J. Struck, P. Wind-passinger, K. Sengstock, Nat. Phys. 8, 71 (2012). https://doi.org/10.1038/nphys2128

    Article  Google Scholar 

  141. M. Lewenstein, W.V. Liu, Nat. Phys. 7, 101 (2011). https://doi.org/10.1038/nphys1894

    Article  Google Scholar 

  142. Z. Nussinov, J. van den Brink, Rev. Mod. Phys. 87, 1 (2015). https://doi.org/10.1103/RevModPhys.87.1

    Article  ADS  Google Scholar 

  143. G.-W. Chern, C. Wu, Phys. Rev. E 84, 061127 (2011). https://doi.org/10.1103/PhysRevE.84.061127

    Article  ADS  Google Scholar 

  144. P.A. McClarty, A. O’Brien, F. Pollmann, Phys. Rev. B 89, 195123 (2014). https://doi.org/10.1103/PhysRevB.89.195123

    Article  ADS  Google Scholar 

  145. M. Di Ventra, Y.V. Pershin, Nat. Phys. 9, 200 (2013). https://doi.org/10.1038/nphys2566

    Article  Google Scholar 

  146. E. Iacocca, S. Gliga, R.L. Stamps, O. Heinonen, Phys. Rev. B 93, 134420 (2016). https://doi.org/10.1103/PhysRevB.93.134420

    Article  ADS  Google Scholar 

  147. Y. Li, G. Gubbiotti, F. Casoli, S.A. Morley, F.J.T. Gonçalves, M.C. Rosamond, E.H. Linfield, C.H. Marrows, S. McVitie, R.L. Stamps, J. Appl. Phys. 121, 103903 (2017). https://doi.org/10.1063/1.4978315

    Article  ADS  Google Scholar 

  148. I. Panagiotopoulos, J. Magn. Magn. Mater. 422, 227 (2017). https://doi.org/10.1016/j.jmmm.2016.08.051

    Article  ADS  Google Scholar 

  149. B.L. Le, D.W. Rench, R. Misra, L. O’Brien, C. Leighton, N. Samarth, P. Schiffer, New J. Phys. 17, 023047 (2015). https://doi.org/10.1088/1367-2630/17/2/023047

  150. B.L. Le, J.-S. Park, J. Sklenar, G.-W. Chern, C. Nisoli, J. Watts, M. Manno, D.W. Rench, N. Samarth, C. Leighton, P. Schiffer, Phys. Rev. B 95, 060405(R) (2017). https://doi.org/10.1103/PhysRevB.95.060405

    Article  ADS  Google Scholar 

  151. J. Park, B. Le, J. Sklenar, G.-W. Chern, J.D. Watts, P. Schiffer, Phys. Rev. B 96, 024436 (2017). https://doi.org/10.1103/PhysRevB.96.024436

    Article  ADS  Google Scholar 

  152. G.-W. Chern, Phys. Rev. Appl. 8, 064006 (2017). https://doi.org/10.1103/PhysRevApplied.8.064006

    Article  ADS  Google Scholar 

  153. Y.-L. Wang, Z.-L. Xiao, A. Snezhko, J. Xu, L.E. Ocola, R. Divan, J.E. Pearson, G.W. Crabtree, W.-K. Kwok, Science 352, 962 (2016). https://doi.org/10.1126/science.aad8037

    Article  ADS  Google Scholar 

  154. I. Gilbert, Y. Lao, I. Carrasquillo, L. O’Brien, J.D. Watts, M. Manno, C. Leighton, A. Scholl, C. Nisoli, P. Schiffer, Nat. Phys. 12, 162 (2016). https://doi.org/10.1038/nphys3520

  155. J. Drisko, T. Marsh, J. Cummings, Nat. Commun. 8, 14009 (2016). https://doi.org/10.1038/ncomms14009

    Article  ADS  Google Scholar 

  156. S. Gliga, G. Hrkac, C. Donnelly, J. Büchi, A. Kleibert, J. Cui, A. Farhan, E. Kirk, R.V. Chopdekar, Y. Masaki, N.S. Bingham, A. Scholl, R.L. Stamps, L.J. Heyderman, Nat. Mater. 16, 1106 (2017). https://doi.org/10.1038/nmat5007

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gia-Wei Chern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chern, GW. (2021). Artificial Spin Ice: Beyond Pyrochlores and Magnetism. In: Udagawa, M., Jaubert, L. (eds) Spin Ice. Springer Series in Solid-State Sciences, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-030-70860-3_15

Download citation

Publish with us

Policies and ethics