Skip to main content

Application of Microwave Oven Plasma Reactors for the Formation of Carbon-Based Nanomaterials

  • Conference paper
  • First Online:
13th Chaotic Modeling and Simulation International Conference (CHAOS 2020)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

This paper reviews the literature on the formation of carbon-based nanomaterials using converted domestic microwave oven plasma reactors. The carbon-based compounds range from single and multi-walled carbon nanotubes, to onion-like nanostructures, fullerene, and graphene sheets. The microwave plasma process is performed using in-liquid containing plasma bubble (plasmoids) generated at an aerial-antenna igniter, susceptor surface ignition within gaseous plasma as well as the use of conventional gaseous plasmas. Based on the literature reports, the thermodynamic and kinetic plasma processing conditions are reviewed, along with process input criteria that include: applied microwave, hydrocarbon precursor, aerial-antenna igniter design, and susceptor material and sample collection. The use of microwave oven drilling (local thermal runaway) and reverse drilling that lead to the ejection of plasmoids which may give rise to the formation dusty plasma or fireball as a processing route for the formation of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.V. Szabó, S. Schlabach, Microwave plasma synthesis of materials-from physics and chemistry to nanoparticles: a materials scientist’s viewpoint. Inorganics 2, 468–507 (2004)

    Article  Google Scholar 

  2. A. Loupy, R.S. Varma, Microwave effects in organic synthesis: mechanistic and reaction medium considerations. Chem. Today. 24(3), 36–39 (2006)

    Google Scholar 

  3. E. Jerby, V. Dikhtyar, O. Aktushev, U. Grosglick, Microwave drill. Science 298, 57–589 (2002)

    Article  Google Scholar 

  4. S. Das, A.K. Sharma, Microwave drilling of materials. Barc Newlett. 329, 15–21 (2012)

    Google Scholar 

  5. H. Toyota, S. Nomura, S. Mukasa, A practical electrode for microwave plasma processes. Int. J. Mater. Sci. Appl. 2(3), 83–88 (2013)

    Google Scholar 

  6. S. Nomura, H. Yamashita, H. Toyota1, S. Mukasa, Y. Okamura, Simultaneous production of hydrogen and carbon nanotubes in a conventional microwave oven. International Symposium on Plasma Chemistry (ISPC19). Bochum, Germany. 65, (2009)

    Google Scholar 

  7. P.H. Talemi, G.P. Simon, A simple microwave-based method for preparation of Fe3O4/carbon composite nanoparticles. Mater. Lett. 64(15), 1684–1687 (2010)

    Article  Google Scholar 

  8. P.H. Talemi, G.P. Simon, Preparation of graphene nanowalls by a simple microwave-based method. Carbon 48(14), 3993–4000 (2010)

    Article  Google Scholar 

  9. N. Kure, M.N. Hamidon, S. Azhari, N.S. Mamat, H.M. Yusoff, B.M. Isa, Z. Yunusa, Simple microwave-assisted synthesis of carbon nanotubes using polyethylene as carbon precursor. J. Nanomater. 2017, 4 (2017)

    Google Scholar 

  10. R. Bajpai, L. Rapoport, K. Amsalem, H.D. Wagner, Rapid growth of onion-like carbon nanospheres in a microwave oven. Crst EngComm. 18(2), 230–239 (2016)

    Google Scholar 

  11. M. Asnawi, S. Azhari, M.N. Hamidon, I. Ismail, I. Helina, Synthesis of carbon nanomaterials from rice husk via microwave oven. J. Nanomater. 2018 (2018)

    Google Scholar 

  12. A. Irzh, I. Genish, L. Klein, L.A. Solovyov, A. Gedanken, Synthesis of ZnO and Zn nanoparticles in microwave plasma and their deposition on glass slides. Langmuir 26(8), 5976–5984 (2010)

    Article  Google Scholar 

  13. R.T. Raj, K. Rajeevkumar, Synthesis of ZnO nanostructures using domestic microwave oven based remote plasma deposition system. Nanosci. Nanotechnol. 2(3), 66–70 (2012)

    Article  Google Scholar 

  14. R. Singh, A.L.L. Jarvis, Microwave plasma enhanced chemical vapour deposition growth of carbon nanostructures. S. Afr. J. Sci. 106(5–6), 4 (2010)

    Google Scholar 

  15. S. Nomura, H. Toyota, S. Mukasa, H. Yamashita, T. Maehara, A. Kawashima, Production of hydrogen in a conventional microwave oven. J. Appl. Phys. 106(7), 073306 (2009)

    Article  Google Scholar 

  16. Y.A. Lebedev, I.L. Epstein, V.A. Shakhatov, E.V. Yusupova, V.S. Konstantinov, Spectroscopy of microwave discharge in liquid C7–C16 hydrocarbons. High Temp. 52(3), 319–327 (2014)

    Article  Google Scholar 

  17. A.A. Mochtar, S. Nomura, S. Mukasa1, H. Toyota, K. Kawamukai, K. Uegaito, F. Syahrial, A novel method for producing hydrogen from a hydrocarbon liquid using microwave in-liquid plasma. J. Energy Power Eng. 10, 335–342 (2016)

    Google Scholar 

  18. S. Nomura, A.E.E. Putra, S. Mukasa, H. Yamashita, H. Toyota, Plasma decomposition of clathrate hydrates by 2.45 GHz microwave irradiation at atmospheric pressure. Appl. Phy. Exp. 4(6), 099201 (2011)

    Google Scholar 

  19. I. Rahim, S. Nomura, S. Mukasa, H. Toyota, Decomposition of methane hydrate for hydrogen production using microwave and radio frequency in-liquid plasma methods. Appl. Therm. Eng. 90, 120–126 (2015)

    Article  Google Scholar 

  20. V.J. Law, D.P. Dowling, Converting a microwave oven into a plasma reactor: a review. IJCE. 2018, 12 (2018)

    Google Scholar 

  21. V.J. Law, D.P. Dowling, Domestic microwave oven and fix geometry waveguide applicator processing of organic compounds and biomaterials: a review. GJRE(A). 18(2), Version 1.0. (2018)

    Google Scholar 

  22. V.J. Law, D.P. Dowling, The domestic microwave oven as a rapid prototyping tool. Analy. Chem. Indian J. 18(2), 19 (2018)

    Google Scholar 

  23. L. Perreux, A. Loupy, A tentative rationalization of microwave effects in organic synthesis according to reaction medium and mechanism considerations. Tetrahedron 57, 9199–9223 (2001)

    Article  Google Scholar 

  24. S. Mukasa, S. Nomura, H. Toyota, Observation of microwave in-liquid plasma using high-speed camera. Jpn. J. Appl. Phys. 46, 6015 (2007)

    Article  Google Scholar 

  25. Y. Hattori, S. Mukasa, H. Toyota, S. Normura, Optimization and analysis of shape of coaxial electrode for microwave plasma in water. J. Appl. Phys. 107, 063305 (2010)

    Article  Google Scholar 

  26. Y. Hattori, S. Mukasa, H. Toyota, S. Normura, Electrical Breakdown of microwave plasma in water. Current Appl. Phys. 13, 1050–1054 (2013)

    Article  Google Scholar 

  27. V.J. Law, D.P. Dowling, Microwave oven plasma reactor moding and its detection. The 12th Chaotic modeling and simulation international conference. CHAOS 2019. Springer Proceedings in Complexity. Springer, Cham. chap 14. 157–179. ed C.H. Skiadas, Y. Dimotikalis (2020)

    Google Scholar 

  28. X. You, F.N. Egolfopoulos, H. Wang, Detailed and simplified kinetic models of n-dodecane oxidation: the role of fuel cracking in aliphatic hydrocarbon combustion. Proc. Combust. Inst. 32, 493–410 (2009)

    Article  Google Scholar 

  29. L. Zhao, T. Yang, R. Kasier, T.P. Troy, M. Ahmed, Combined experimental and computational study unimolecular decomposition of JP-8 fuel surrogates. J. Phys. Chem. A 121, 1281–1291 (2017)

    Article  Google Scholar 

  30. K.K. Rana, S. Rana, Microwave reactors: a brief review on its fundamental aspects and applications. Open Access Library J 1, 20 (2014). http://dx.doi.org/https://doi.org/10.4236/oalib.1100686

  31. Y.S. Lee, F. Malek, E.M. Cheng, Wei-Wen Liu, F. H. Wee, M. N. Iqbal, L. Zahid. M. S. Mezan, F. S. Abdullah, M. Othman, Dielectric properties of rice husk/carbon nanotubes composites in ku-band. 25–28, 75–78 (2014)

    Google Scholar 

  32. G. Saito, T. Akiyama, Nanomaterial. Synthesis using plasma generation in liquid. J. Nanomater. 2015, 20 (2015)

    Google Scholar 

  33. M.T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8, 127–133 (2003)

    Article  Google Scholar 

  34. T. Ishijima, H. Sugiura, R. Satio, H. Toyada, H. Sugai, Efficient production of microwave bubble plasma in water for plasma processing in liquid. Plasma, Sources Sci. Technol. 19(29), 015010 (2010)

    Google Scholar 

  35. M. Bhattacharya, T. Basak, A review on the susceptor assisted microwave processing of materials. Energy. 97, 306–338 (2016)

    Article  Google Scholar 

  36. M. Hotta, M. Hayashi, M.T. Lanagan, D.K. Agrawal, K. Nagata, Complex permittivity of graphite, carbon black and coal powders in the ranges of X-band frequencies (8.2 to 12.4 GHz) and between 1 and 10 GHz. ISIJ International. 51(11), 1766–1772 (2011)

    Google Scholar 

  37. E. Jerby, Y. Meir, R. Jaffe, I. Jerby, Food cooking by microwave-excited plasmoid in air atmosphere. Proceedings of 14th International Conference on Microwave and High Frequency Heating. Nottingham, UK. 27–30 (2013)

    Google Scholar 

  38. V. Dikhtyar, E. Jerby, Fireball ejection from a molten hot spot to air by localized microwaves. Phys. Rev. Lett. 96, 045002 (2006)

    Article  Google Scholar 

  39. E. Jerby, Detachment of a microwave-excited plasmoid from molten glass. IEEE Trans. Plasma Sci. 39(11), 2198–2199 (2011)

    Article  Google Scholar 

  40. Y. Meir, E. Jerby, Z. Barkay, D. Ashkenazi, J.B. Mitchell, T. Narayanan, N. Eliaz, Jean-Luc LeGarrec, M. Sztucki, O. Meshcheryakov, Observations of ball-lightning-like plasmoids ejected from silicon by localized microwaves. Materials 6, 4011–4030 (2013)

    Google Scholar 

  41. J.B.A. Mitchell, J.L. LeGarrec, M. Sztucki, T. Narayanan, V. Dikhtyar, E. Jerby, Evidence for nanoparticles in microwave-generated fireballs observed by synchrotron X-ray scattering. Phys. Rev. Lett. 100. 065001 (2008)

    Google Scholar 

  42. S.E. Dubowsky, D.M. Friday, K.C. Peters, Z. Zhao, R.H. Perry, B.J. McCall, Mass spectrometry of atmospheric-pressure ball plasmoids. Int. J. Mass Spectrom. 376, 39–45 (2015)

    Article  Google Scholar 

  43. S.E. Dubowsky, B. Deutsch, R. Bhargava, B.J. McCall, Infrared emission spectroscopy of atmospheric-pressure ball plasmoids. J. Mol. Spectrosc. 32, 1–8 (2016)

    Article  Google Scholar 

  44. H. Ofuruton, Y.H. Ohtsuki, Experimental research on ball lightning. Il Nuovo Cimento C. 13(4), 761–768 (1990)

    Article  Google Scholar 

  45. A.L. Pirozerski, S.E. Emelin, Long-living plasmoids generation by high-voltage discharge through thin conducting layers. Proceedings of the 9th International Symposium on Ball Lightning, ed. G.C. Dijkhuis. Eindhoven, The Netherlands, pp. 180–190 (2006)

    Google Scholar 

  46. J. Abrahamson, J. Dinniss, Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil. Nature 403, 519–521 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This publication has emanated from research supported Science Foundation Ireland (SFI) I-Form Centre, under Grant. Number 16/RC/3872. The Authors declare that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Law, V.J., Dowling, D.P. (2021). Application of Microwave Oven Plasma Reactors for the Formation of Carbon-Based Nanomaterials. In: Skiadas, C.H., Dimotikalis, Y. (eds) 13th Chaotic Modeling and Simulation International Conference. CHAOS 2020. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-70795-8_35

Download citation

Publish with us

Policies and ethics