Skip to main content

Accessible Smart Coaching Technologies Inspired by Elderly Requisites

  • Chapter
  • First Online:
Multimedia for Accessible Human Computer Interfaces

Abstract

Ageing in place (at home) is gaining popularity due to the increasing proportion of the elderly population and stay at home lifestyle. Technology can be of great help to support ageing in place. Primarily, we need systems for telerehabilitation, exercise or necessary physical training, support for weakly functioning body parts and self-assessment. This chapter introduces state-of-the-art devices for each of the mentioned categories that can support and enhance the quality of life (QoL) of older adults. Wearable technologies that are suitable for at-home usage are discussed next that use a low-pressure type McKibben actuator called the pneumatic gel muscle (PGM). PGMs are utilized to design a soft exoskeleton jacket for remote human interaction to achieve a wearable solution for telerehabilitation. The force induced by the system and the latencies involved are reported. PGMs are further used to design a wearable balance exercise device. The effectiveness of the device is evaluated using a single-leg stance test. Another system using PGMs to support swing motion is elaborated. This design is evaluated using various parameters of the lower limb. The stealth adaptive exergame design framework is explained along with an exergame enabling adjustable load. Finally, a brushed body area assessment system is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. UN – World Population Ageing (2019). https://www.un.org/en/development/desa/population/publications/pdf/ageing/. Last accessed 2020/09/15

  2. Angel, J.L., Mudrazija, S.: Local government efforts to mitigate the novel coronavirus pandemic among older adults. J. Aging Soc. Policy 32(4–5), 439–449 (2020). https://doi.org/10.1080/08959420.2020.1771240

    Article  Google Scholar 

  3. Peek, S.T.M., Luijkx, K.G., Rijnaard, M.D., Nieboer, M.E., van der Voort, C.S., Aarts, S., van Hoof, J., Vrijhoef, H.J.M., Wouters, E.J.M.: Older adults’ reasons for using technology while aging in place. Gerontology 62(2), 226–237 (2015). https://doi.org/10.1159/000430949

    Article  Google Scholar 

  4. Agree, E.M.: The potential for technology to enhance independence for those aging with a disability. Disabil. Health J. 7(1), S33–S39 (2014). https://doi.org/10.1016/j.dhjo.2013.09.004

    Article  Google Scholar 

  5. Reeder, B., Meyer, E., Lazar, A., Chaudhuri, S., Thompson, H.J., Demiris, G.: Framing the evidence for health smart homes and home-based consumer health technologies as a public health intervention for independent aging: A systematic review. Int. J. Med. Inform. 82(7), 565–579 (2013). https://doi.org/10.1016/j.ijmedinf.2013.03.007

    Article  Google Scholar 

  6. Nonnekes, J., Nieuwboer, A.: Towards personalized rehabilitation for gait impairments in Parkinson’s disease. J. Parkinson’s Dis. 8(s1), S101–S106 (2018). https://doi.org/10.3233/jpd-181464

    Article  Google Scholar 

  7. Morita, Y., Nagasaki, M., Ukai, H., Matsui, N., Uchida, M.: Development of rehabilitation training support system of upper limb motor function for personalized rehabilitation. In: 2008 IEEE International Conference on Robotics and Biomimetics, pp. 300–305 (2009). https://doi.org/10.1109/ROBIO.2009.4913020

  8. Romano, A.M., Oliva, F., Nastrucci, G., Casillo, P., Di Giunta, A., Susanna, M., Ascione, F.: Reverse shoulder arthroplasty patient personalized rehabilitation protocol. Preliminary results according to prognostic groups. Muscles Ligaments Tendons J., 263–270 (2017). https://doi.org/10.11138/mltj/2017.7.2.263

  9. Lee, M.H., Siewiorek, D.P., Smailagic, A., Bernardino, A., Bermúdez i Badia, S.: Interactive hybrid approach to combine machine and human intelligence for personalized rehabilitation assessment. In: Proceedings of the ACM Conference on Health, Inference, and Learning, pp. 160–169. ACM, Toronto (2020). https://doi.org/10.1145/3368555.3384452

  10. Klinger, E., Kadri, A., Sorita, E., Le Guiet, J.-L., Coignard, P., Fuchs, P., Leroy, L., du Lac, N., Servant, F., Joseph, P.-A.: AGATHE: A tool for personalized rehabilitation of cognitive functions based on simulated activities of daily living. IRBM 34(2), 113–118 (2013). https://doi.org/10.1016/j.irbm.2013.01.005

    Article  Google Scholar 

  11. González-González, C.S., Toledo-Delgado, P.A., Muñoz-Cruz, V., Torres-Carrion, P.V.: Serious games for rehabilitation: Gestural interaction in personalized gamified exercises through a recommender system. J. Biomed. Inf. 97, 103266 (2019). https://doi.org/10.1016/j.jbi.2019.103266

    Article  Google Scholar 

  12. Kumar, D., González, A., Das, A., Dutta, A., Fraisse, P., Hayashibe, M., Lahiri, U.: Virtual reality-based center of mass-assisted personalized balance training system. Front. Bioeng. Biotechnol. 5, 85–99 (2018). https://doi.org/10.3389/fbioe.2017.00085

    Article  Google Scholar 

  13. Safonicheva, O.G., Ovchinnikova, M.A. New approaches to the development of personalized rehabilitation programs for the children with disabilities, including autism spectrum disorders. In: Autism 360∘, pp. 427–475. Academic Press (2020). https://doi.org/10.1016/B978-0-12-818466-0.00022-8

  14. Des Roches, C.A., Kiran, S.: Technology-based rehabilitation to improve communication after acquired brain injury. Front. Neurosci. 11, 382 (2017). https://doi.org/10.3389/fnins.2017.00382

    Article  Google Scholar 

  15. Bendíková, E.: Lifestyle, physical and sports education and health benefits of physical activity. Eur. Res. (2–2), 343–348 (2014). https://doi.org/10.13187/issn.2219-8229

    Google Scholar 

  16. Ishii, H., Wisneski, C., Orbanes, J., Chun, B., Paradiso, J.: PingPongPlus: design of an athletic-tangible interface for computer-supported cooperative play. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 394–401 (1999). https://doi.org/10.1145/302979.303115

  17. Bideau, B., Kulpa, R., Ménardais, S., Fradet, L., Multon, F., Delamarche, P., Arnaldi, B.: Real handball goalkeeper vs. virtual handball thrower. Presence Teleop. Virt. Environ. 12(4), 411–421 (2003). https://doi.org/10.1162/105474603322391631

  18. Bideau, B., Multon, F., Kulpa, R., Fradet, L., Arnaldi, B., Delamarche, P.: Using virtual reality to analyze links between handball thrower kinematics and goalkeeper’s reactions. Neurosci. Lett. 372(1–2), 119–122 (2004). https://doi.org/10.1016/j.neulet.2004.09.023

    Article  Google Scholar 

  19. Pan, Z., Xu, W., Huang, J., Zhang, M., Shi, J.: Easybowling: a small bowling machine based on virtual simulation. Comput. Graph. 27(2), 231–238 (2003). https://doi.org/10.1016/S0097-8493(02)00280-7

    Article  Google Scholar 

  20. Hämäläinen, P., Ilmonen, T., Höysniemi, J., Lindholm, M., Nykänen, A.: Martial arts in artificial reality. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 781–790 (2005). https://doi.org/10.1145/1054972.1055081

  21. Craig, C.M., Berton, E., Rao, G., Fernandez, L., Bootsma, R.J.: Judging where a ball will go: the case of curved free kicks in football. Naturwissenschaften 93(2), 97–101 (2006). https://doi.org/10.1007/s00114-005-0071-0

    Article  Google Scholar 

  22. Bideau, B., Kulpa, R., Vignais, N., Brault, S., Multon, F., Craig, C.: Using virtual reality to analyze sports performance. IEEE Comput. Graph. Appl. 30(2), 14–21 (2009). https://doi.org/10.1109/MCG.2009.134

    Google Scholar 

  23. Fink, P.W., Foo, P.S., Warren, W.H.: Catching fly balls in virtual reality: a critical test of the outfielder problem. J. Vis. 9(13), 14 (2009). https://doi.org/10.1167/9.13.14

    Article  Google Scholar 

  24. Craig, C.M., Goulon, C., Berton, E., Rao, G., Fernandez, L., Bootsma, R.J.: Optic variables used to judge future ball arrival position in expert and novice soccer players. Attention Perception Psychophys. 71(3), 515–522 (2009). https://doi.org/10.3758/APP.71.3.515

    Article  Google Scholar 

  25. Bergamasco, M., Bardy, B., Gopher, D.: Skill training in multimodal virtual environments. CRC Press (2012). https://doi.org/10.1201/b12704

  26. Dhawan, A., Cummins, A., Spratford, W., Dessing, J.C., Craig, C.: Development of a novel immersive interactive virtual reality cricket simulator for cricket batting. In: Proceedings of the 10th International Symposium on Computer Science in Sports (ISCSS), pp. 203–210. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24560-7_26

  27. Huang, Y., Churches, L., Reilly, B.: A case study on virtual reality American football training. In: Proceedings of the 2015 Virtual Reality International Conference, pp. 1–5 (2015). https://doi.org/10.1145/2806173.2806178

  28. Hoffmann, C.P., Filippeschi, A., Ruffaldi, E., Bardy, B.G.: Energy management using virtual reality improves 2000-m rowing performance. J. Sports Sci. 32(6), 501–509 (2014). https://doi.org/10.1080/02640414.2013.835435

    Article  Google Scholar 

  29. Yamashita, S., Zhang, X., Rekimoto, J.: Aquacave: Augmented swimming environment with immersive surround-screen virtual reality. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 183–184 (2016). https://doi.org/10.1145/2984751.2984760

  30. Tiator, M., Geiger, C., Dewitz, B., Fischer, B., Gerhardt, L., Nowottnik, D., Preu, H.: Venga! climbing in mixed reality. In: Proceedings of the First Superhuman Sports Design Challenge: First International Symposium on Amplifying Capabilities and Competing in Mixed Realities, pp. 1–8 (2018). https://doi.org/10.1145/3210299.3210308

  31. Scilingo, E.P., Lorussi, F., Mazzoldi, A., De Rossi, D.: Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors J. 3(4), 460–467 (2003). https://doi.org/10.1109/JSEN.2003.815771

    Article  Google Scholar 

  32. Chittenden, T.: Skin in the game: the use of sensing smart fabrics in tennis costume as a means of analyzing performance. Fashion Textiles 4(1), 22 (2017). https://doi.org/10.1186/s40691-017-0107-z

    Article  Google Scholar 

  33. Ray, T., Choi, J., Reeder, J., Lee, S.P., Aranyosi, A.J., Ghaffari, R., Rogers, J.A.: Soft, skin-interfaced wearable systems for sports science and analytics. Curr. Opin. Biomed. Eng. 9, 47–56 (2019). https://doi.org/10.1016/j.cobme.2019.01.003

    Article  Google Scholar 

  34. Fong, D.T., Wong, J.C.W., Lam, A.H., Lam, R.H., Li, W.J.: A wireless motion sensing system using ADXL MEMS accelerometers for sports science applications. In: Fifth World Congress on Intelligent Control and Automation (CAT), vol. 6, pp. 5635–5640. IEEE, Piscataway (2004). https://doi.org/10.1109/WCICA.2004.1343815

  35. Margarito, J., Helaoui, R., Bianchi, A.M., Sartor, F., Bonomi, A.G.: User-independent recognition of sports activities from a single wrist-worn accelerometer: A template-matching-based approach. IEEE Trans. Biomed. Eng. 63(4), 788–796 (2015). https://doi.org/10.1109/TBME.2015.2471094

    Google Scholar 

  36. Kidman, E.M., D’Souza, M.J., Singh, S.P.: A wearable device with inertial motion tracking and vibro-tactile feedback for aesthetic sport athletes Diving Coach Monitor. In: 2016 10th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–6. IEEE, Piscataway (2016). https://doi.org/10.1109/ICSPCS.2016.7843371

  37. Rawashdeh, S.A., Rafeldt, D.A., Uhl, T.L.: Wearable IMU for shoulder injury prevention in overhead sports. Sensors 16(11), 1847 (2016). https://doi.org/10.3390/s16111847

    Article  Google Scholar 

  38. Gouwanda, D., Senanayake, S.M.N.A.: Real time multi-sensory force sensing mat for sports biomechanics and human gait analysis. Int. J. Intell. Syst. Technol. 3(3), 149–154 (2008). https://doi.org/10.5281/zenodo.1057839

    Google Scholar 

  39. Arumugam, D.D., Sibley, M., Griffin, J.D., Stancil, D.D., Ricketts, D.S.: An active position sensing tag for sports visualization in American football. In: 2013 IEEE International Conference on RFID (RFID), pp. 96–103. IEEE, Piscataway (2013). https://doi.org/10.1109/RFID.2013.6548141

  40. Michahelles, F., Schiele, B.: Sensing and monitoring professional skiers. IEEE Pervas. Comput. 4(3), 40–45 (2005). https://doi.org/10.1109/MPRV.2005.66

    Article  Google Scholar 

  41. Cummins, C., Orr, R., O’Connor, H., West, C.: Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. Sports Med. 43(10), 1025–1042 (2013). https://doi.org/10.1007/s40279-013-0069-2

    Article  Google Scholar 

  42. McIlwraith, D., Yang, G.Z.: Body sensor networks for sport, wellbeing and health. In: Sensor Networks, pp. 349–381. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-01341-6_13

  43. Jeukendrup, A.E., Chambers, E.S.: Oral carbohydrate sensing and exercise performance. Curr. Opin. Clin. Nutr. Metab. Care 13(4), 447–451 (2010). https://doi.org/10.1097/MCO.0b013e328339de83

    Article  Google Scholar 

  44. Nenonen, V., Lindblad, A., Häkkinen, V., Laitinen, T., Jouhtio, M., Hämäläinen, P.: Using heart rate to control an interactive game. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 853–856 (2007). https://doi.org/10.1145/1240624.1240752

  45. Wang, Y., Chen, M., Wang, X., Chan, R.H., Li, W.J.: IoT for next-generation racket sports training. IEEE Internet Things J. 5(6), 4558–4566 (2018). https://doi.org/10.1109/JIOT.2018.2837347

    Article  Google Scholar 

  46. Gowda, M., Dhekne, A., Shen, S., Choudhury, R.R., Yang, L., Golwalkar, S., Essanian, A.: Bringing IoT to sports analytics. In: 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), pp. 499–513 (2017). https://doi.org/10.5555/3154630.3154672

  47. Wilkerson, G.B., Gupta, A., Colston, M.A.: Mitigating sports injury risks using internet of things and analytics approaches. Risk Anal. 38(7), 1348–1360 (2018). https://doi.org/10.1111/risa.12984

    Article  Google Scholar 

  48. Ikram, M.A., Alshehri, M.D., Hussain, F.K.: Architecture of an IoT-based system for football supervision (IoT Football). In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 69–74. IEEE, Piscataway (2015). https://doi.org/10.1109/WF-IoT.2015.7389029

  49. Rudin, A.R.A., Audah, L., Jamil, A., Abdullah, J.: Occupancy monitoring system for campus sports facilities using the Internet of Things (IoT). In: 2016 IEEE Conference on Wireless Sensors (ICWiSE), pp. 100–105. IEEE, Piscataway (2016). https://doi.org/10.1109/ICWISE.2016.8188550

  50. Lee, T.G.: Analysis of golf ball mobility and balancing based on IoT sports environments. Int. J. Adv. Smart Convergence 8(3), 78–86 (2019). https://doi.org/10.7236/IJASC.2019.8.3.78

    Google Scholar 

  51. Kim, J., Kim, S.: Development of wearable sports helmet model using IoT server technology. In: Information Science and Applications, pp. 691–695. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-1465-4_69

  52. Catarinucci, L., De Donno, D., Mainetti, L., Patrono, L., Stefanizzi, M.L., Tarricone, L.: An IoT-aware architecture to improve safety in sports environments. J. Commun. Softw. Syst. 13(2), 44–52 (2017). https://doi.org/10.24138/jcomss.v13i2.372

    Article  Google Scholar 

  53. Novatchkov, H., Baca, A.: Fuzzy logic in sports: a review and an illustrative case study in the field of strength training. Int. J. Comput. Appl. 71(6), 8–14 (2013). https://doi.org/10.5120/12360-8675

    Google Scholar 

  54. Vales-Alonso, J., Chaves-Diéguez, D., López-Matencio, P., Alcaraz, J.J., Parrado-Garcia, F.J., Gonzalez-Castano, F. J.: SAETA: A smart coaching assistant for professional volleyball training. IEEE Trans. Syst. Man Cybern. Syst. 45(8), 1138–1150 (2015). https://doi.org/10.1109/TSMC.2015.2391258

    Article  Google Scholar 

  55. Brault, S., Bideau, B., Craig, C., Kulpa, R.: Balancing deceit and disguise: How to successfully fool the defender in a 1 vs. 1 situation in rugby. Hum. Mov. Sci. 29(3), 412–425 (2010). https://doi.org/10.1016/j.humov.2009.12.004

  56. Fok, W.W., Chan, L.C., Chen, C.: Artificial intelligence for sport actions and performance analysis using recurrent neural network (RNN) with long short-term memory (LSTM). In: Proceedings of the 2018 4th International Conference on Robotics and Artificial Intelligence, pp. 40–44 (2018). https://doi.org/10.1145/3297097.3297115

  57. Farley, O.R., Abbiss, C.R., Sheppard, J.M.: Performance analysis of surfing: a review. J. Strength Cond. Res. 31(1), 260–271 (2017). https://doi.org/10.1519/JSC.0000000000001442

    Article  Google Scholar 

  58. Bunker, R.P., Thabtah, F.: A machine learning framework for sport result prediction. Applied Comput. Inf. 15(1), 27–33 (2019). https://doi.org/10.1016/j.aci.2017.09.005

    Google Scholar 

  59. Claudino, J.G., de Oliveira Capanema, D., de Souza, T.V., Serrão, J.C., Pereira, A.C.M., Nassis, G.P.: Current approaches to the use of artificial intelligence for injury risk assessment and performance prediction in team sports: a systematic review. Sports Med. Open 5(1), 28 (2019). https://doi.org/10.1186/s40798-019-0202-3

    Article  Google Scholar 

  60. Velayati, F., Ayatollahi, H., Hemmat, M.: A systematic review of the effectiveness of telerehabilitation interventions for therapeutic purposes in the elderly. Methods Inf. Med. 2020(01) (2020). https://doi.org/10.1055/s-0040-1713398

  61. Piron, L., Turolla, A., Agostini, M., Zucconi, C., Cortese, F., Zampolini, M., Tonin, P.: Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J. Rehabil. Med. 41(12), 1016–1020 (2009). https://doi.org/10.2340/16501977-0459

    Article  Google Scholar 

  62. Bernocchi, P., Vitacca, M., La Rovere, M. T., Volterrani, M., Galli, T., Baratti, D., Paneroni, M., Campolongo, G., Sposato, B., Scalvini, S.: Home-based telerehabilitation in older patients with chronic obstructive pulmonary disease and heart failure: a randomised controlled trial. Age Ageing 47(1), 82–88 (2018). https://doi.org/10.1093/ageing/afx146

    Article  Google Scholar 

  63. Russell, T.G., Buttrum, P., Wootton, R., Jull, G.A.: Low-bandwidth telerehabilitation for patients who have undergone total knee replacement: preliminary results. J. Telemed. Telecare 9(2_suppl), 44–47 (2003). https://doi.org/10.1258%2F135763303322596246

  64. Piqueras, M., Marco, E., Coll, M., Escalada, F., Ballester, A., Cinca, C., Belmonte, R., Muniesa, J.M.: Effectiveness of an interactive virtual telerehabilitation system in patients after total knee arthroplasty: a randomized controlled trial. J. Rehabil. Med. 45(4), 392–396 (2013). https://doi.org/10.2340/16501977-1119

    Article  Google Scholar 

  65. Bini, S.A., Mahajan, J.: Clinical outcomes of remote asynchronous telerehabilitation are equivalent to traditional therapy following total knee arthroplasty: a randomized control study. J. Telemed. Telecare 23(2), 239–247 (2017). https://doi.org/10.1177/2F1357633X16634518

    Article  Google Scholar 

  66. Linder, S.M., Reiss, A., Buchanan, S., Sahu, K., Rosenfeldt, A.B., Clark, C., Wolf, S.L., Alberts, J.L.: Incorporating robotic-assisted telerehabilitation in a home program to improve arm function following stroke: a case study. J. Neurol. Phys. Ther. JNPT 37(3), 125–132 (2013). https://dx.doi.org/10.1097%2FNPT.0b013e31829fa808

    Article  Google Scholar 

  67. Chen, Y., Abel, K.T., Janecek, J.T., Chen, Y., Zheng, K., Cramer, S.C.: Home-based technologies for stroke rehabilitation: a systematic review. Int. J. Med. Inform. 123, 11–22 (2019). https://doi.org/10.1016/j.ijmedinf.2018.12.001

    Article  Google Scholar 

  68. Heo, P., Gu, G.M., Lee, S.J., Rhee, K., Kim, J.: Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf. 13(5), 807–824 (2012). https://doi.org/10.1007/s12541-012-0107-2

    Article  Google Scholar 

  69. Bogue, R.: Exoskeletons and robotic prosthetics: a review of recent developments. Ind. Robot. Int. J. 36(5), 421–427 (2009). https://doi.org/10.1108/01439910910980141

    Article  Google Scholar 

  70. Varghese, R.J., Freer, D., Deligianni, F., Liu, J., Yang, G.Z., Tong, R.: Wearable robotics for upper-limb rehabilitation and assistance: A review of the state-of-the-art challenges and future research. In: Wearable Technology in Medicine and Health Care, pp. 23–69. Elsevier (2018). https://doi.org/10.1016/B978-0-12-811810-8.00003-8

  71. Pons, J.L.: A review of performance metrics for lower limb wearable robots: preliminary results. In: Wearable Robotics: Challenges and Trends: Proceedings of the 4th International Symposium on Wearable Robotics (WeRob2018). Pisa, vol. 22, pp. 147–151. Springer (2018). https://doi.org/10.1007/978-3-030-01887-0_29

  72. Asbeck, A.T., Dyer, R.J., Larusson, A.F., Walsh, C.J.: Biologically-inspired soft exosuit. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), pp. 1–8. IEEE, Piscataway (2013). https://doi.org/10.1109/ICORR.2013.6650455

  73. Park, S.J., Park, C.H.: Suit-type wearable robot powered by shape-memory-alloy-based fabric muscle. Sci. Rep. 9(1), 1–8 (2019). https://doi.org/10.1038/s41598-019-45722-x

    Google Scholar 

  74. Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L.F., Mosadegh, B., Whitesides, G.M., Walsh, C.J.: Towards a soft pneumatic glove for hand rehabilitation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1512–1517. IEEE, Piscataway (2013). https://doi.org/10.1109/IROS.2013.6696549

  75. Oguntosin, V.W., Mori, Y., Kim, H., Nasuto, S.J., Kawamura, S., Hayashi, Y.: Design and validation of exoskeleton actuated by soft modules toward neurorehabilitation–vision-based control for precise reaching motion of upper limb. Front. Neurosci. 11, 352 (2017). https://doi.org/10.3389/fnins.2017.00352

    Article  Google Scholar 

  76. Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135-143 (2015). https://doi.org/10.1016/j.robot.2014.08.014

    Article  Google Scholar 

  77. Payne, C.J., Hevia, E.G., Phipps, N., Atalay, A., Atalay, O., Seo, B.R., Walsh, C.J.: Force control of textile-based soft wearable robots for mechanotherapy. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7. IEEE, Piscataway (2018). https://doi.org/10.1109/ICRA.2018.8461059

  78. Guo, J., Xiang, C., Helps, T., Taghavi, M., Rossiter, J.: Electroactive textile actuators for wearable and soft robots. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft), pp. 339–343. IEEE, Piscataway (2018). https://doi.org/10.1109/ROBOSOFT.2018.8404942

  79. Satoh, H., Kawabata, T., Sankai, Y.: Bathing care assistance with robot suit HAL. In: 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 498–503. IEEE, Piscataway (2009). https://doi.org/10.1109/ROBIO.2009.5420697

  80. Ogawa, K., Thakur, C., Ikeda, T., Tsuji, T., Kurita, Y.: Development of a pneumatic artificial muscle driven by low pressure and its application to the unplugged powered suit. Adv. Robot. 31(21), 1135–1143 (2017). https://doi.org/10.1080/01691864.2017.1392345

    Article  Google Scholar 

  81. Ramirez, A.V., Kurita, Y.: A soft exoskeleton jacket with pneumatic gel muscles for human motion interaction. In: International Conference on Human-Computer Interaction, pp. 587–603. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23563-5_46

  82. Yamamoto, M., Kishishita, Y., Shimatani, K., Kurita, Y.: Development of new soft wearable balance exercise device using pneumatic gel muscles. Appl. Sci. 9(15), 3108 (2019). https://doi.org/10.3390/app9153108

    Article  Google Scholar 

  83. MacRae, P.G., Lacourse, M., Moldavon, R.: Physical performance measures that predict faller status in community-dwelling older adults. J. Orthop. Sports Phys. Ther. 16(3), 123–128 (1992). https://www.jospt.org/doi/10.2519/jospt.1992.16.3.123

    Article  Google Scholar 

  84. Michikawa, T., Nishiwaki, Y., Takebayashi, T., Toyama, Y.: One-leg standing test for elderly populations. J. Orthop. Sci. 14(5), 675–685 (2009). https://doi.org/10.1007/s00776-009-1371-6

    Article  Google Scholar 

  85. Dingenen, B., Staes, F.F., Janssens, L.: A new method to analyze postural stability during a transition task from double-leg stance to single-leg stance. J. Biomech. 46(13), 2213–2219 (2013). https://doi.org/10.1016/j.jbiomech.2013.06.026

    Article  Google Scholar 

  86. Cavanagh, P.R., Komi, P.V.: Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 42(3), 159–163 (1979). https://doi.org/10.1007/BF00431022

    Article  Google Scholar 

  87. Santos, M.J., Kanekar, N., Aruin, A.S.: The role of anticipatory postural adjustments in compensatory control of posture: 2. Biomechanical analysis. J. Electromyogr. Kinesiol. 20(3), 398–405 (2010). https://doi.org/10.1016/j.jelekin.2010.01.002

    Article  Google Scholar 

  88. Toda, H., Tada, M., Maruyama, T., Kurita, Y.: Effect of contraction parameters on swing support during walking using wireless pneumatic artificial muscle driver: a preliminary study. In: 2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 727–732. IEEE, Piscataway (2019). https://doi.org/10.23919/SICE.2019.8859803

  89. Thakur, C., Ogawa, K., Tsuji, T., Kurita, Y.: Soft wearable augmented walking suit with pneumatic gel muscles and stance phase detection system to assist gait. IEEE Robot. Autom. Lett. 3(4), 4257–4264 (2018). https://doi.org/10.1109/LRA.2018.2864355

    Article  Google Scholar 

  90. Park, Y.L., Chen, B.R., Pérez-Arancibia, N.O., Young, D., Stirling, L., Wood, R.J., Goldfield, U.C., Nagpal, R.: Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation. Bioinspir. Biomim. 9(1), 016007 (2014). https://doi.org/10.1088/1748-3182/9/1/016007

    Article  Google Scholar 

  91. Endo, Y., Tada, M., Mochimaru, M.: Dhaiba: development of virtual ergonomic assessment system with human models. In: Proceedings of the 3rd International Digital Human Modeling Symposium, 58 (2014). http://www.dhm2014.org/program.html. Last accessed 2020/09/15

  92. Maruyama, T., Tada, M., Sawatome, A., Endo, Y. Constraint-based real-time full-body motion-capture using inertial measurement units. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4298–4303. IEEE, Piscataway (2018). https://doi.org/10.1109/SMC.2018.00727

  93. Sween, J., Wallington, S.F., Sheppard, V., Taylor, T., Llanos, A.A., Adams-Campbell, L.L.: The role of exergaming in improving physical activity: a review. J. Phys. Activity Health 11(4), 864–870 (2014). https://doi.org/10.1123/jpah.2011-0425

    Article  Google Scholar 

  94. Kari, T.: Can exergaming promote physical fitness and physical activity?: A systematic review of systematic reviews. Int. J. Gaming Comput. Mediated Simul. (IJGCMS) 6(4), 59–77 (2014). https://doi.org/10.4018/ijgcms.2014100105

  95. Kaplan, O., Yamamoto, G., Taketomi, T., Plopski, A., Sandor, C., Kato, H.: Exergame experience of young and old individuals under different difficulty adjustment methods. Computers 7(4), 59 (2018). https://doi.org/10.3390/computers7040059

    Article  Google Scholar 

  96. Muñoz, J.E., Cameirão, M., Bermúdez i Badia, S., Gouveia, E.R.: Closing the loop in exergaming-health benefits of biocybernetic adaptation in senior adults. In: Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play, pp. 329–339 (2018). https://doi.org/10.1145/3242671.3242673

  97. Tadayon, R., Sakoda, W., Kurita, Y.: Stealth-adaptive exergame design framework for elderly and rehabilitative users. In: International Conference on Human-Computer Interaction, pp. 419–434. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50249-2_30

  98. Tadayon, R., Amresh, A., McDaniel, T., Panchanathan, S.: Real-time stealth intervention for motor learning using player flow-state. In: 2018 IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–8. IEEE, Piscataway (2018). https://doi.org/10.1109/SeGAH.2018.8401360

  99. Tadayon, R., Ramirez, A.V., Das, S., Kishishita, Y., Yamamoto, M., Kurita, Y.: Automatic exercise assistance for the elderly using real-time adaptation to performance and affect. In: International Conference on Human-Computer Interaction, pp. 556–574. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23563-5_44

  100. Yoshimura, N., Muraki, S., Oka, H., Tanaka, S., Ogata, T., Kawaguchi, H., Akune, T., Nakamura, K.: Association between new indices in the locomotive syndrome risk test and decline in mobility: third survey of the ROAD study. J. Orthop. Sci. 20(5), 896–905 (2015). https://doi.org/10.1007/s00776-015-0741-5

    Article  Google Scholar 

  101. Sakoda, W., Tadayon, R., Kishishita, Y., Yamamoto, M., Kurita, Y.: Ski exergame for squat training to change load based on predicted Locomotive risk level. In: 2020 IEEE/SICE International Symposium on System Integration (SII), pp. 289–294. IEEE, Piscataway (2020). https://doi.org/10.1109/SII46433.2020.9026280

  102. Minakata, M., Maruyama, T., Tada, M., Toda, H., Kurita, Y.: Quantitative assessment of brushed bodily area by measuring of brush motion using IMUs and its accuracy evaluation. In: 2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 723–726. IEEE, Piscataway (2019). https://controls.papercept.net/conferences/conferences/SICE19/program/SICE19_ContentListWeb_3.html. Last accessed 2020/09/15

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagata Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Kurita, Y., Tadayon, R. (2021). Accessible Smart Coaching Technologies Inspired by Elderly Requisites. In: McDaniel, T., Liu, X. (eds) Multimedia for Accessible Human Computer Interfaces. Springer, Cham. https://doi.org/10.1007/978-3-030-70716-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70716-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70715-6

  • Online ISBN: 978-3-030-70716-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics