Skip to main content

Performance Evaluation of an OOK-Based Visible Light Communication System for Transmission of Patient Monitoring Data

  • Conference paper
  • First Online:
XXVII Brazilian Congress on Biomedical Engineering (CBEB 2020)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 83))

Included in the following conference series:

  • 101 Accesses

Abstract

The absence of interference by radio waves, due to the use the unlicensed light spectrum provided by light-emitting diodes (LEDs) sources, is one of the main advantages of visible light communication (VLC) systems in health classified areas. The robustness of a stable and reliable VLC system, for application in intensive care medical environments, is experimentally demonstrated in this paper. A proof-of-concept experimental setup is presented and the results described to confirm the performance of on-off keying (OOK) schemes based on Manchester coding. The experimental results show that the transmission, of real data provided by a patient monitoring equipment, over a VLC link of 1.5 m, was successfully achieved with the wide range of LED bias current between 10 and \(\approx 700\) mA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pathak P, Feng X, Hu P, Mohapatra P (2015) Visible light communication. Netw Sens Surv Poten Challenges IEEE Commun Surv Tutor 17:2047–2077

    Article  Google Scholar 

  2. Hussain B, Li X, Che F, Patrick C, Wu L (2015) Visible light communication system design and link budget analysis. J Lightw Technol 33:5201–5209

    Article  Google Scholar 

  3. Schulz D, Jungnickel V, Alexakis C et al (2016) Robust optical wireless link for the backhaul and fronthaul of small radio cells. J Lightw Technol 34:1523–1532

    Article  Google Scholar 

  4. Arnon S (2015) Visible light communication. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Rajagopal S, Roberts R, Lim S (2012) IEEE 802.15. Visible light communication: modulation schemes and dimming support. IEEE Commun Mag 50

    Google Scholar 

  6. Berenguer P, Schulz D, Hilt J et al (2017) Optical wireless MIMO experiments in an industrial environment. IEEE J Select Areas Commun 36:185–193

    Article  Google Scholar 

  7. Mahmood Z (2019) The internet of things in the industrial sector. Springer, Berlin

    Book  Google Scholar 

  8. Retamal J, Oubei H, Janjua B et al (2015) 4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode. Opt Exp 23:33656–33666

    Article  Google Scholar 

  9. Khan L (2017) Visible light communication: applications, architecture, standardization and research challenges. Digit Commun Netw 3:78–88

    Article  Google Scholar 

  10. Dhatchayeny D, Sewaiwar A, Tiwari S Vikramaditya, Chung Y (2015) EEG biomedical signal transmission using visible light communication. In: IEEE 2015 International Conference on Industrial Instrumentation and Control (ICIC), pp. 243–246

    Google Scholar 

  11. Cheong Y, Ng X, Chung W (2013) Hazardless biomedical sensing data transmission using VLC. IEEE Sens J 13:3347–3348

    Article  Google Scholar 

  12. Rachim V, An J, Quan P, Chung W (2017) A novel smartphone camera-LED communication for clinical signal transmission in mHealth-rehabilitation system. In: IEEE 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3437–3440

    Google Scholar 

  13. Tan Y, Chung W (2014) Mobile health-monitoring system through visible light communication. Bio-med Mater Eng 24:3529–3538

    Article  Google Scholar 

  14. Adiono T, Armansyah R, Nolika S, Ikram F, Putra R, Salman A (2016) Visible light communication system for wearable patient monitoring device. 2016 IEEE Region 10 Conference (TENCON), pp. 1969–1972

    Google Scholar 

  15. Torkestani S, Sahuguede S, Julien-Vergonjanne A, Cances J (2012) Indoor optical wireless system dedicated to healthcare application in a hospital in IET communications 6:541–547

    Google Scholar 

  16. Mana S, Hellwig P, Hilt J, et al (2020) LiFi experiments in a hospital. In: Optical Fiber Communication Conference: M3I–2 Optical Society of America 2020

    Google Scholar 

  17. Mayuri M, Vijayalakshmi B, Sindhubala K (2015) Biomedical data transmission using visible light communication. Int J Appl Eng Res 10

    Google Scholar 

  18. Silva F, Martins W (2017) A computational platform for visible light communications. XXXV Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT 2017). 891–895

    Google Scholar 

  19. Proakis J, Salehi M (2001) Digital communications, 4th edn. McGraw-hill, New York

    Google Scholar 

  20. Binh LN (2014) Optical fiber communication systems with Matlab and Simulink models. CRC Press, Boca Raton

    Book  Google Scholar 

  21. LumiLeds . LUXEON Rebel ES - Datasheet https://www.lumileds.com/uploads/17/DS61-pdf 2020. Accessed 4 Apr 2020

    Google Scholar 

  22. Zwaag K, Neves J, Rocha H, Segatto M, Silva J (2019) Adaptation to the LEDs flicker requirement in visible light communication systems through CE-OFDM signals. Opt Commun 441:14–20

    Article  Google Scholar 

  23. Zwaag K, Neves J, Rocha H, Segatto M, Silva J (2018) Increasing VLC nonlinearity tolerance by CE-OFDM. In: Latin America Optics and Photonics Conference: W3D–3Optical Society of America 2018

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the FAPES 80599230/17, 538/2018, 84343338, 601/2018, and CNPq 307757/2016-1, 304564/2016-8, 309823/2018-8 research projects.

Conflict of Interest The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. vd Zwaag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

vd Zwaag, K. et al. (2022). Performance Evaluation of an OOK-Based Visible Light Communication System for Transmission of Patient Monitoring Data. In: Bastos-Filho, T.F., de Oliveira Caldeira, E.M., Frizera-Neto, A. (eds) XXVII Brazilian Congress on Biomedical Engineering. CBEB 2020. IFMBE Proceedings, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-030-70601-2_110

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70601-2_110

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70600-5

  • Online ISBN: 978-3-030-70601-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics