Skip to main content

Predicting Cardiovascular Death with Automatically Designed Fuzzy Logic Rule-Based Models

  • Conference paper
  • First Online:
Computational Intelligence (IJCCI 2019)

Abstract

Predictive models are commonly used in epidemiological studies to estimate risks of illnesses. For knowledge-based models, the logic behind is clear, whereas for automatically generated data-driven models, it is not always transparent how they work. In this study, we applied an evolutionary approach to design a Fuzzy Logic Rule-based model that is easily interpretable compared to many other data-driven models. We utilized a high-dimensional epidemiological data collected within the Kuopio Ischemic Heart Disease Risk Factor (KIHD) Study in 1984–1989 to train the model and predict cardiovascular death for middle-aged men by 2016. In multiple runs of 5-fold cross-validation, we evaluated the model performance and showed that it could achieve higher true positive rate (TPR) than Random Forest and provide more stable results than Decision Tree. Also, the presented approach proved its effectiveness for high-dimensional samples: on the set of 653 predictors, we obtained 68% accuracy on average, whereas on the reduced set of 100 predictors, we could improve this result only up to 70%. Furthermore, this study introduces the most important predictor variables used in the generated Fuzzy Logic Rule-based model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: fact sheet ‘Cardiovascular diseases (CVDs)’, http://www.who.int/mediacentre/factsheets/fs317/en/. Last accessed 05 Jan 2020

  2. Hippisley-Cox, J., Coupland, C., Brindle, P.: Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 357, j2099 (2017)

    Article  Google Scholar 

  3. Weeramanthri, T.S., Dawkins, H.J.S., Baynam, G., Bellgard, M., Gudes, O., Semmens, J.B.: Editorial: precision public health. Front Public Health 6(121) (2018). https://doi.org/10.3389/fpubh.2018.00121

  4. Dolley, S.: Big Data’s role in precision public health. Front Public Health 6, 68 (2018). https://doi.org/10.3389/fpubh.2018.00068

    Article  Google Scholar 

  5. Vartiainen, E., Laatikainen, T., Peltonen, M., Puska, P.M.: Predicting coronary heart disease and stroke: the FINRISK calculator. Glob Heart 11(2), 213–216 (2016)

    Article  Google Scholar 

  6. Salonen, J.T.: Is there a continuing need for longitudinal epidemiologic research? The Kuopio Ischaemic heart disease risk factor study. Ann Clin Res 20(1–2), 46–50 (1988)

    Google Scholar 

  7. Brester, Ch., Stanovov, V., Voutilainen, A., Tuomainen, T.-P., Semenkin, E., Kolehmainen, M.: Evolutionary fuzzy logic-based model design in predicting coronary heart disease and its progression. In: Proceedings of the 11th International Joint Conference on Computational Intelligence, vol. 1, pp. 360–366. FCTA, Vienna, Austria (2019). https://doi.org/10.5220/0008363303600366

  8. Fazzolari, M., Alcala, R., Nojima, Y., Ishibuchi, H., Herrera, F.: A review of the application of multiobjective evolutionary fuzzy systems: current status and further directions. IEEE Trans. Fuzzy Syst. 21(1), 45–65 (2013)

    Article  Google Scholar 

  9. Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press (1992)

    Google Scholar 

  10. Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol Intell 1, 27–46 (2008)

    Article  Google Scholar 

  11. Stanovov, V., Semenkin, E., Semenkina, O.: Self-configuring hybrid evolutionary algorithm for fuzzy classification with active learning. IEEE Congress Evolut Comput CEC 2015, 1823–1830 (2015)

    Google Scholar 

  12. Stanovov, V., Semenkin, E., Semenkina, O.: Self-configuring hybrid evolutionary algorithm for fuzzy imbalanced classification with adaptive instance selection. J Artif Intell Soft Comput Res 6(3), 173–188 (2016)

    Article  Google Scholar 

  13. Ishibuchi, H., Mihara, S., Nojima, Y.: Parallel distributed hybrid fuzzy GBML models with rule set migration and training data rotation. IEEE Trans Fuzzy Syst 21(2) (2013)

    Google Scholar 

  14. Stanovov, V., Brester, C., Kolehmainen, M., Semenkina, O.: Why don’t you use evolutionary algorithms in big data? IOP Conf Seri: Mater Sci Eng 173(1) (2017). https://doi.org/10.1088/1757-899x/173/1/012020

  15. Ishibuchi, H., Yamamoto, T.: Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13(4), 428–435 (2005)

    Article  Google Scholar 

  16. Semenkina, M., Semenkin, E.: Hybrid self-configuring evolutionary algorithm for automated design of fuzzy classifier. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds.). Advances in Swarm Intelligence, PT1, LNCS vol. 8794, pp. 310–317 (2014)

    Google Scholar 

  17. Virtanen, J.K., Wu, J.H.Y., Voutilainen, S., Mursu, J., Tuomainen, T.P.: Serum n-6 polyunsaturated fatty acids and risk of death: the Kuopio Ischaemic heart disease risk factor study. Am. J. Clin. Nutr. 107(3), 427–435 (2018). https://doi.org/10.1093/ajcn/nqx063

    Article  Google Scholar 

  18. Ylilauri, M.P.T., Voutilainen, S., Lönnroos, E., Virtanen, H.E.K., Tuomainen, T.P., Salonen, J.T., Virtanen, J.K.: Associations of dietary choline intake with risk of incident dementia and with cognitive performance: the Kuopio Ischaemic Heart disease risk factor study. Am. J. Clin. Nutr. 110(6), 1416–1423 (2019). https://doi.org/10.1093/ajcn/nqz148

    Article  Google Scholar 

  19. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525 (2001). https://doi.org/10.1093/bioinformatics/17.6.520

    Article  Google Scholar 

  20. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Article  Google Scholar 

  21. Breiman, L.: Random Forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/a:1010933404324

    Article  MATH  Google Scholar 

  22. Brester, Ch., Voutilainen, A., Tuomainen, T.-P., Kauhanen, J., Kolehmainen, M.: Epidemiological predictive modeling: lessons learned from the Kuopio Ischemic Heart Disease risk factor study (Unpublished, 2021)

    Google Scholar 

  23. Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning: data mining, inference, and prediction. Springer, New York Inc. (2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The reported study was funded by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science, to the research project: 18-41-242011 “Multi-objective design of predictive models with compact interpretable strictures in epidemiology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Brester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brester, C., Stanovov, V., Voutilainen, A., Tuomainen, TP., Semenkin, E., Kolehmainen, M. (2021). Predicting Cardiovascular Death with Automatically Designed Fuzzy Logic Rule-Based Models. In: Merelo, J.J., Garibaldi, J., Linares-Barranco, A., Warwick, K., Madani, K. (eds) Computational Intelligence. IJCCI 2019. Studies in Computational Intelligence, vol 922. Springer, Cham. https://doi.org/10.1007/978-3-030-70594-7_9

Download citation

Publish with us

Policies and ethics