Skip to main content

A Review of Metaheuristic Optimization Algorithms in Wireless Sensor Networks

  • Chapter
  • First Online:
Metaheuristics in Machine Learning: Theory and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 967))

  • The original version of this chapter was revise. The author M. Hassaballah’s affiliation has been updated with new affiliation. The correction to this chapter can be found at https://doi.org/10.1007/978-3-030-70542-8_31

Abstract

The proliferation of wireless sensor network (WSNs) applications span different domains of life, including medicine, engineering, industry, agriculture, and military. A notable part of research pertaining to WSNs relates to metaheuristic algorithms, implemented to address difficulties in the deployment of these networks. Due to robust and cost effective optimization ability, these algorithms efficiently optimize sensor locations for maximum coverage and extended energy consumption. This chapter presents the definitions of metaheuristic intelligence, wireless sensor network, and their respective types. Also, a wide range of scientific research works that include improving the performance of wireless sensor networks in terms of deployment, localization, and energy using optimization algorithms. Finally, the evaluation criteria for deployment and localization in wireless sensor networks are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 11 October 2021

    The original version of the book was published with incorrect affiliation for the author M. Hassaballah. Affiliation has been updated with correct affiliation for the following chapters:

References

  1. M.A. Matin, M. Islam, Overview of wireless sensor network, in Wireless Sensor Networks-Technology and Protocols (2012), pp. 1–3

    Google Scholar 

  2. J. Chen, S. Li, Y. Sun, Novel deployment schemes for mobile sensor networks. Sensors 7(11), 2907–2919 (2007)

    Article  Google Scholar 

  3. L. Cheng, C. Wu, Y. Zhang, H. Wu, M. Li, C. Maple, A survey of localization in wireless sensor network. Int. J. Distrib. Sens. Netw. 8(12), (2012)

    Google Scholar 

  4. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)

    Article  Google Scholar 

  5. M. Iqbal, M. Naeem, A. Anpalagan, N.N. Qadri, M. Imran, Multi-objective optimization in sensor networks: optimization classification, applications and solution approaches. Comput. Netw. 99, 134–161 (2016)

    Article  Google Scholar 

  6. K. Hussain, M.N.M. Salleh, S. Cheng, Y. Shi, Metaheuristic research: a comprehensive survey. Artif. Intell. Rev. 52(4), 2191–2233 (2019)

    Article  Google Scholar 

  7. I. Fister Jr, X.-S. Yang, I. Fister, J. Brest, and D. Fister, A Brief Review of Nature-Inspired Algorithms for Optimization (2013). arXiv preprintarXiv:1307.4186

  8. E. Zitzler, M. Laumanns, L. Thiele, Spea2: Improving the strength pareto evolutionary algorithm, in TIK-Report, vol. 103 (2001)

    Google Scholar 

  9. T. Back, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms (Oxford University Press, Oxford, 1996)

    Book  MATH  Google Scholar 

  10. X.-S. Yang, S. Deb, Y.-X. Zhao, S. Fong, X. He, Swarm intelligence: past, present and future. Soft Comput. 22(18), 5923–5933 (2018)

    Article  Google Scholar 

  11. B. K. Panigrahi, Y. Shi, and M.-H. Lim, Handbook of swarm intelligence: concepts, principles and applications, vol. 8 (Springer Science & Business Media, 2011)

    Google Scholar 

  12. C. Blum, D. Merkle, Swarm intelligence, in Swarm Intelligence in Optimization ed. by Blum, C., Merkle, D., (2008) pp. 43–85

    Google Scholar 

  13. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. G.-C. Luh, C.-Y. Lin, Structural topology optimization using ant colony optimization algorithm. Appl. Soft Comput. 9(4), 1343–1353 (2009)

    Article  Google Scholar 

  15. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  16. S. Mirjalili, A. Lewis, The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  17. S.-C. Chu, P.-W. Tsai, J.-S. Pan, Cat swarm optimization, in Pacific Rim International Conference on Artificial Intelligence (Springer, 2006), pp. 854–858

    Google Scholar 

  18. S. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017)

    Article  Google Scholar 

  19. S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)

    Article  MathSciNet  Google Scholar 

  20. A.H. Gandomi, S. Talatahari, F. Tadbiri, A.H. Alavi, Krill herd algorithm for optimum design of truss structures. IJBIC 5(5), 281–288 (2013)

    Article  Google Scholar 

  21. S. Mirjalili, The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

  22. A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  23. H.-B. Wang, C.-C. Fan, X.-Y. Tu, Afsaocp: a novel artificial fish swarm optimization algorithm aided by ocean current power. Appl. Intell. 45(4), 992–1007 (2016)

    Article  Google Scholar 

  24. G.-G. Wang, S. Deb, L. d. S. Coelho, Elephant herding optimization, in 3rd International Symposium on Computational and Business Intelligence (ISCBI) (IEEE, 2015), pp. 1–5

    Google Scholar 

  25. K. Krishnanand, D. Ghose, Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell. 3(2), 87–124 (2009)

    Article  Google Scholar 

  26. P. Moscato et al., On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms, in Caltech Concurrent Computation Program, C3P Report (1989), vol. 826, p. 1989

    Google Scholar 

  27. J. R. Koza, Genetic Programming (1997)

    Google Scholar 

  28. X.-S. Yang, Harmony search as a metaheuristic algorithm, in In Music-Inspired Harmony Search Algorithm Springer, Berlin, 2009), pp. 1–14

    Google Scholar 

  29. S.J. Mousavirad, H. Ebrahimpour-Komleh, Human mental search: a new population-based metaheuristic optimization algorithm. Appl. Intell. 47(3), 850–887 (2017)

    Article  Google Scholar 

  30. Z. Bayraktar, M. Komurcu, Adaptive wind driven optimization, in Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS). ICST (Institute for Computer Sciences, Social-Informatics and \(\ldots \), 2016), pp. 124–127

    Google Scholar 

  31. H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110, 151–166 (2012)

    Article  Google Scholar 

  32. F. Ramezani, S. Lotfi, Social-based algorithm (sba). Appl. Soft Comput. 13(5), 2837–2856 (2013)

    Article  Google Scholar 

  33. A. Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi, Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)

    Article  Google Scholar 

  34. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines (1988)

    Google Scholar 

  36. A. Kaveh, M. Khayatazad, A new meta-heuristic method: ray optimization. Comput. Struct. 112, 283–294 (2012)

    Article  Google Scholar 

  37. A.Y. Lam, V.O. Li, J. James, Real-coded chemical reaction optimization. IEEE Trans. Evol. Comput. 16(3), 339–353 (2011)

    Article  Google Scholar 

  38. B. Javidy, A. Hatamlou, S. Mirjalili, Ions motion algorithm for solving optimization problems. Appl. Soft Comput. 32, 72–79 (2015)

    Article  Google Scholar 

  39. A. Kaveh, M.A.M. Share, M. Moslehi, Magnetic charged system search: a new meta-heuristic algorithm for optimization. Acta Mech. 224(1), 85–107 (2013)

    Article  MATH  Google Scholar 

  40. B. Webster, P.J. Bernhard, A Local Search Optimization Algorithm Based on Natural Principles of Gravitation. Tech. Rep. (2003)

    Google Scholar 

  41. W. Zhao, L. Wang, Z. Zhang, Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl.-Based Syst. 163, 283–304 (2019)

    Article  Google Scholar 

  42. F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili, Henry gas solubility optimization: a novel physics-based algorithm. Future Gener. Comput. Syst. 101, 646–667 (2019)

    Article  Google Scholar 

  43. P. Civicioglu, Artificial cooperative search algorithm for numerical optimization problems. Inf. Sci. 229, 58–76 (2013)

    Article  MATH  Google Scholar 

  44. M. O’Neill, C. Ryan, Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)

    Article  Google Scholar 

  45. Y. Xu, Z. Cui, J. Zeng, Social emotional optimization algorithm for nonlinear constrained optimization problems, in International Conference on Swarm, Evolutionary, and Memetic Computing (Springer, 2010), pp. 583–590

    Google Scholar 

  46. K. Abaci, V. Yamacli, Differential search algorithm for solving multi-objective optimal power flow problem. Int. J. Electr. Power Energy Syst. 79, 1–10 (2016)

    Article  Google Scholar 

  47. P. Civicioglu, Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  48. A.H. Kashan, League championship algorithm: a new algorithm for numerical function optimization, in International Conference of Soft Computing and Pattern Recognition (IEEE, 2009), pp. 43–48

    Google Scholar 

  49. M. M. Ahmed, E. H. Houssein, A. E. Hassanien, A. Taha, E. Hassanien, Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm, in Telecommunication Systems, pp. 1–17 (2019)

    Google Scholar 

  50. H.M. Kanoosh, E.H. Houssein, M.M. Selim, Salp swarm algorithm for node localization in wireless sensor networks. J. Comput. Netw. Commun. 2019 (2019)

    Google Scholar 

  51. F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, W. Al-Atabany, A modified henry gas solubility optimization for solving motif discovery problem. Neural Comput. Appl. 32(14), 10759–10771 (2020)

    Article  Google Scholar 

  52. J. Yick, B. Mukherjee, D. Ghosal, Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)

    Article  Google Scholar 

  53. M.F. Othman, K. Shazali, Wireless sensor network applications: a study in environment monitoring system. Procedia Eng. 41, 1204–1210 (2012)

    Article  Google Scholar 

  54. I. Silva, L.A. Guedes, P. Portugal, F. Vasques, Reliability and availability evaluation of wireless sensor networks for industrial applications. Sensors 12(1), 806–838 (2012)

    Article  Google Scholar 

  55. G. Zhao, Wireless sensor networks for industrial process monitoring and control: a survey. Netw. Protocols Algorithms 3(1), 46–63 (2011)

    Google Scholar 

  56. Z. Yu, C. Xiao, G. Zhou, Multi-objectivization-based localization of underwater sensors using magnetometers. IEEE Sensors J. 14(4), 1099–1106 (2013)

    Article  Google Scholar 

  57. S. Rathi, R. Gupta, L. Ormsbee, A review of sensor placement objective metrics for contamination detection in water distribution networks. Water Sci. Technol. Water Supply 15(5), 898–917 (2015)

    Article  Google Scholar 

  58. Y. Wang, Topology control for wireless sensor networks, in Wireless Sensor Networks and Applications, Springer, Berlin, 2008), pp. 113–147

    Google Scholar 

  59. P.M. Wightman, M.A. Labrador, A3: A topology construction algorithm for wireless sensor networks, in IEEE GLOBECOM 2008–2008 IEEE Global Telecommunications Conference (IEEE, 2008), pp. 1–6

    Google Scholar 

  60. Z. Yuanyuan, X. Jia, H. Yanxiang, Energy efficient distributed connected dominating sets construction in wireless sensor networks, in Proceedings of the 2006 international conference on Wireless Communications and Mobile Computing (ACM, 2006), pp. 797–802

    Google Scholar 

  61. J. Wu, M. Cardei, F. Dai, S. Yang, Extended dominating set and its applications in ad hoc networks using cooperative communication. IEEE Trans. Parallel Distrib. Syst. 17(8), 851–864 (2006)

    Article  Google Scholar 

  62. A. Efrat, S. Har-Peled, J. S. Mitchell, Approximation algorithms for two optimal location problems in sensor networks, in 2nd International Conference on Broadband Networks (IEEE, 2005), pp. 714–723

    Google Scholar 

  63. C.A. Coello, An updated survey of ga-based multiobjective optimization techniques. ACM Comput. Surv. (CSUR) 32(2), 109–143 (2000)

    Article  Google Scholar 

  64. A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P.N. Suganthan, Q. Zhang, Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Article  Google Scholar 

  65. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16 (Wiley & Sons, New York, 2001)

    MATH  Google Scholar 

  66. J. Andersson, A Survey of Multiobjective Optimization in Engineering Design (Department of Mechanical Engineering, Linktjping University, Sweden, 2000)

    Google Scholar 

  67. A.A. Ewees, M.A. Elaziz, E.H. Houssein, Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst. Appl. 112, 156–172 (2018)

    Article  Google Scholar 

  68. A. G. Hussien, E. H. Houssein, A. E. Hassanien, A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection, in 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (IEEE, 2017), pp. 166–172

    Google Scholar 

  69. K.Y. Lee, M.A. El-Sharkawi, Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems, vol. 39 (Wiley & Sons, New York, 2008)

    Book  Google Scholar 

  70. A. Tharwat, E.H. Houssein, M.M. Ahmed, A.E. Hassanien, T. Gabel, Mogoa algorithm for constrained and unconstrained multi-objective optimization problems. Appl. Intell. 48(8), 2268–2283 (2018)

    Article  Google Scholar 

  71. A. K. Hartmann, H. Rieger, Optimization Algorithms in Physics, vol. 2 (Wiley Online Library, 2002)

    Google Scholar 

  72. C.A.C. Coello, Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11–12), 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  73. R.T. Marler, J.S. Arora, Survey of multi-objective optimization methods for engineering. Struct. Multidisc. Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  74. T. Navalertporn, N.V. Afzulpurkar, Optimization of tile manufacturing process using particle swarm optimization. Swarm Evol. Comput. 1(2), 97–109 (2011)

    Article  Google Scholar 

  75. Q.-K. Pan, M.F. Tasgetiren, P.N. Suganthan, T.J. Chua, A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf. Sci. 181(12), 2455–2468 (2011)

    Article  MathSciNet  Google Scholar 

  76. S. Saremi, S.Z. Mirjalili, S.M. Mirjalili, Evolutionary population dynamics and grey wolf optimizer. Neural Comput. Appl. 26(5), 1257–1263 (2015)

    Article  Google Scholar 

  77. J.C. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, vol. 65 (Wiley & Sons, New York, 2005)

    MATH  Google Scholar 

  78. H. Kashif, N. Mohd, S. Mohd, C. Shi, Y. Shi, On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput. Appl. 31, 7665–7683 (2019)

    Article  Google Scholar 

  79. L. Cheng, X.-H. Wu, Y. Wang, Artificial flora (af) optimization algorithm. Appl. Sci. 8(3), 329 (2018)

    Article  Google Scholar 

  80. A.M. Fathollahi-Fard, M. Hajiaghaei-Keshteli, R. Tavakkoli-Moghaddam, The social engineering optimizer (seo). Eng. Appl. Artif. Intell. 72, 267–293 (2018)

    Article  Google Scholar 

  81. A. Sadollah, H. Sayyaadi, A. Yadav, A dynamic metaheuristic optimization model inspired by biological nervous systems: neural network algorithm. Appl. Soft Comput. 71, 747–782 (2018)

    Article  Google Scholar 

  82. W.A. Hussein, S. Sahran, S.N.H.S. Abdullah, Patch-levy-based initialization algorithm for bees algorithm. Appl. Soft Comput. 23, 104–121 (2014)

    Article  Google Scholar 

  83. S. Mirjalili, Sca: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  84. N.E. Humphries, D.W. Sims, Optimal foraging strategies: Lévy walks balance searching and patch exploitation under a very broad range of conditions. J. Theor. Biol. 358, 179–193 (2014)

    Article  MATH  Google Scholar 

  85. D. Tang, J. Yang, S. Dong, Z. Liu, A lévy flight-based shuffled frog-leaping algorithm and its applications for continuous optimization problems. Appl. Soft Comput. 49, 641–662 (2016)

    Article  Google Scholar 

  86. T.K. Sharma, M. Pant, Opposition based learning ingrained shuffled frog-leaping algorithm. J. Comput. Sci. 21, 307–315 (2017)

    Article  MathSciNet  Google Scholar 

  87. D. Zaldivar, B. Morales, A. Rodriguez, A. Valdivia-G, E. Cuevas, M. Pérez-Cisneros, A novel bio-inspired optimization model based on yellow saddle goatfish behavior. Biosystems 174, 1–21 (2018)

    Article  Google Scholar 

  88. M. Jain, V. Singh, A. Rani, A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019)

    Article  Google Scholar 

  89. S. Gupta, K. Deep, A novel random walk grey wolf optimizer. Swarm Evol. Comput. 44, 101–112 (2019)

    Article  Google Scholar 

  90. H. Haklı, H. Uğuz, A novel particle swarm optimization algorithm with levy flight. Appl. Soft Comput. 23, 333–345 (2014)

    Article  Google Scholar 

  91. S. Pakzad-Moghaddam, A lévy flight embedded particle swarm optimization for multi-objective parallel-machine scheduling with learning and adapting considerations. Comput. Ind. Eng. 91, 109–128 (2016)

    Article  Google Scholar 

  92. H. Zhang, J. Xie, Q. Hu, L. Shao, T. Chen, A hybrid dpso with levy flight for scheduling mimo radar tasks. Appl. Soft Comput. 71, 242–254 (2018)

    Article  Google Scholar 

  93. D. W. Gage, Command Control for Many-Robot Systems (Naval Command Control and Ocean Surveillance Center Rdt And E Div San Diego CA, Tech. Rep., 1992)

    Google Scholar 

  94. X. Shen, J. Chen, Y. Sun, Grid scan: A simple and effective approach for coverage issue in wireless sensor networks, in 2006 IEEE International Conference on Communications, vol. 8 (IEEE, 2006), pp. 3480–3484

    Google Scholar 

  95. H.T.T. Binh, N.T. Hanh, N. Dey et al., Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks. Neural Comput. Appl. 30(7), 2305–2317 (2018)

    Article  Google Scholar 

  96. W.-H. Liao, Y. Kao, Y.-S. Li, A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks. Expert Syst. Appl. 38(10), 12180–12188 (2011)

    Article  Google Scholar 

  97. W.-H. Liao, Y. Kao, R.-T. Wu, Ant colony optimization based sensor deployment protocol for wireless sensor networks. Expert Syst. Appl. 38(6), 6599–6605 (2011)

    Article  Google Scholar 

  98. W. Yiyue, L. Hongmei, H. Hengyang, Wireless sensor network deployment using an optimized artificial fish swarm algorithm, in 2012 International Conference on Computer Science and Electronics Engineering, vol. 2 (IEEE, 2012), pp. 90–94

    Google Scholar 

  99. D. T. H. Ly, N. T. Hanh, H. T. T. Binh, N. D. Nghia, “An improved genetic algorithm for maximizing area coverage in wireless sensor networks, in Proceedings of the Sixth International Symposium on Information and Communication Technology (ACM, 2015), pp. 61–66

    Google Scholar 

  100. X. Wang, S. Wang, J.-J. Ma, An improved co-evolutionary particle swarm optimization for wireless sensor networks with dynamic deployment. Sensors 7(3), 354–370 (2007)

    Article  Google Scholar 

  101. D. Lavanya, S. K. Udgata, Swarm intelligence based localization in wireless sensor networks, in International Workshop on Multi-Disciplinary Trends in Artificial Intelligence (Springer, 2011), pp. 317–328

    Google Scholar 

  102. C. So-In, S. Permpol, K. Rujirakul, Soft computing-based localizations in wireless sensor networks. Perv. Mob. Comput. 29, 17–37 (2016)

    Article  Google Scholar 

  103. S. Goyal, M.S. Patterh, Modified bat algorithm for localization of wireless sensor network. Wirel. Pers. Commun. 86(2), 657–670 (2016)

    Article  Google Scholar 

  104. S.D. Muller, J. Marchetto, S. Airaghi, P. Kournoutsakos, Optimization based on bacterial chemotaxis. IEEE Trans. Evol. Comput. 6(1), 16–29 (2002)

    Article  Google Scholar 

  105. Z. Sun, L. Tao, X. Wang, Z. Zhou, Localization algorithm in wireless sensor networks based on multiobjective particle swarm optimization. Int. J. Distrib. Sensor Netw. 11(8) (2015)

    Google Scholar 

  106. I. Strumberger, M. Beko, M. Tuba, M. Minovic, N. Bacanin, Elephant herding optimization algorithm for wireless sensor network localization problem, in Doctoral Conference on Computing, Electrical and Industrial Systems (Springer, 2018), pp. 175–184

    Google Scholar 

  107. Y. Yao, N. Jiang, Distributed wireless sensor network localization based on weighted search. Comput. Netw. 86, 57–75 (2015)

    Article  Google Scholar 

  108. T. Eva, S. Dana, D. Edin, J. Raka, T. Milan, Energy efficient sink placement in wireless sensor networks by brain storm optimization algorithm, in 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC) (2018), pp. 718–723

    Google Scholar 

  109. I. Strumberger, M. Minovic, M. Tuba, N. Bacanin, Performance of elephant herding optimization and tree growth algorithm adapted for node localization in wireless sensor networks. Sensors 19(11), 2515 (2019)

    Article  Google Scholar 

  110. V. Snasel, L. Kong, P. Tsai, J.-S. Pan, Sink node placement strategies based on cat swarm optimization algorithm. J. Netw. Intell. 1(2), 52–60 (2016)

    Google Scholar 

  111. M.M. Fouad, V. Snasel, A.E. Hassanien, Energy-aware sink node localization algorithm for wireless sensor networks. Int. J. Distrib. Sens. Netw. 11(7), (2015)

    Google Scholar 

  112. H. Banka, P. K. Jana et al., Pso-based multiple-sink placement algorithm for protracting the lifetime of wireless sensor networks, in Proceedings of the second international conference on computer and communication technologies (Springer, 2016), pp. 605–616

    Google Scholar 

  113. M.N. Rahman, M. Matin, Efficient algorithm for prolonging network lifetime of wireless sensor networks. Tsinghua Sci. Technol. 16(6), 561–568 (2011)

    Article  Google Scholar 

  114. M. M. Fouad, V. Snasel, A. E. Hassanien, An adaptive pso-based sink node localization approach for wireless sensor networks, in Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015 (Springer, 2016), pp. 679–688

    Google Scholar 

  115. J. H. Holland et al., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (MIT press, 1992)

    Google Scholar 

  116. G. Soumitra, S. Itu, S. Apoorva, Ga optimal sink placement for maximizing coverage in wireless sensor networks, in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (2016), pp. 737–741

    Google Scholar 

  117. D. Marco, B. Mauro, S. Thomas, Ant colony optimization. IEEE Computational Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  118. F. Chen, R. Li, Sink node placement strategies for wireless sensor networks. Wirel. Pers. Commun. 68(2), 303–319 (2013)

    Article  Google Scholar 

  119. Y. Lin, J. Zhang, H.S.-H. Chung, W.H. Ip, Y. Li, Y.-H. Shi, An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(3), 408–420 (2011)

    Article  Google Scholar 

  120. A.M. Shamsan Saleh, B. Mohd Ali, M.F.A. Rasid, A. Ismail, A self-optimizing scheme for energy balanced routing in wireless sensor networks using sensorant. Sensors 12(8), 11307–11333 (2012)

    Article  Google Scholar 

  121. S. Jose V. V., R. Ricardo A. L., A. Harilton S., B. Rodrigo A. R. S., F. Raimir Holanda, Automated design of fuzzy rule base using ant colony optimization for improving the performance in wireless sensor networks, in 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2013), pp. 1–8

    Google Scholar 

  122. Z. Jingjing, G. Lixin, Clustering routing algorithm for wsn based on improved ant colony algorithm, in International Conference on Electrical and Control Engineering (2011), pp. 2924–2928

    Google Scholar 

  123. X.-S. Yang, S. Deb, Cuckoo search: recent advances and applications. Neural Comput. Appl. 24(1), 169–174 (2014)

    Article  Google Scholar 

  124. J. Cheng, L. Xia, An effective cuckoo search algorithm for node localization in wireless sensor network. Sensors 16(9), 1390 (2016)

    Article  Google Scholar 

  125. S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Soft. 114, 163–191 (2017)

    Article  Google Scholar 

  126. M. M. Ahmed, E. H. Houssein, A. E. Hassanien, A. Taha, E. Hassanien, Maximizing lifetime of wireless sensor networks based on whale optimization algorithm, in International Conference on Advanced Intelligent Systems and Informatics (Springer, 2017), pp. 724–733

    Google Scholar 

  127. Y. Shi, Brain storm optimization algorithm, in International conference in swarm intelligence (Springer, 2011), pp. 303–309

    Google Scholar 

  128. M.M. Fouad, A.I. Hafez, A.E. Hassanien, V. Snasel, Grey wolves optimizer-based localization approach in wsns, in 11th International Computer Engineering Conference (ICENCO) (IEEE, 2015), pp. 256–260

    Google Scholar 

  129. M.M. Fouad, A.I. Hafez, A.E. Hassanien, Optimizing topologies in wireless sensor networks: A comparative analysis between the grey wolves and the chicken swarm optimization algorithms. Comput. Netw. 163, 106882 (2019)

    Article  Google Scholar 

  130. X. Meng, Y. Liu, X. Gao, H. Zhang, A new bio-inspired algorithm: chicken swarm optimization, in International Conference in Swarm Intelligence (Springer, 2014), pp. 86–94

    Google Scholar 

  131. H. Li, Y. Liu, W. Chen, W. Jia, B. Li, J. Xiong, Coca: Constructing optimal clustering architecture to maximize sensor network lifetime. Comput. Commun. 36(3), 256–268 (2013)

    Article  Google Scholar 

  132. H. Nakano, M. Yoshimura, A. Utani, A. Miyauchi, H. Yamamoto, A sink node allocation scheme in wireless sensor networks using suppression particle swarm optimization, Sustainable Wireless Sensor Networks (2010)

    Google Scholar 

  133. J. Luo, -P. Hubaux, Joint mobility and routing for lifetime elongation in wireless sensor networks, in Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3 (IEE, 2005) pp. 1735–1746

    Google Scholar 

  134. A. Bogdanov, E. Maneva, S. Riesenfeld, Power-aware base station positioning for sensor networks, in IEEE INFOCOM 2004, vol. 1 (IEE, 2004)

    Google Scholar 

  135. D. Mechta, S. Harous, Prolonging wsn lifetime using a new scheme for sink moving based on artificial fish swarm algorithm, in Proceedings of the Second International Conference on Advanced Wireless Information, Data, and Communication Technologies (ACM, 2017), p. 7

    Google Scholar 

  136. T. Shankar, S. Shanmugavel, A. Rajesh, Hybrid hsa and pso algorithm for energy efficient cluster head selection in wireless sensor networks. Swarm Evol. Comput. 30, 1–10 (2016)

    Article  Google Scholar 

  137. M. Azharuddin, P.K. Jana, Particle swarm optimization for maximizing lifetime of wireless sensor networks. Comput. Electr. Eng. 51, 26–42 (2016)

    Article  Google Scholar 

  138. P. M. Wightman, M. A. Labrador, Atarraya: A simulation tool to teach and research topology control algorithms for wireless sensor networks, in Proceedings of the 2nd International Conference on Simulation Tools and Techniques, ICST (Institute for Computer Sciences, Social-Informatics and \(\ldots \), 2009), p. 26

    Google Scholar 

  139. A. Konstantinidis, K. Yang, Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific moea/d. Appl. Soft Comput. 11(6), 4117–4134 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Houssein, E.H., Saad, M.R., Hussain, K., Shaban, H., Hassaballah, M. (2021). A Review of Metaheuristic Optimization Algorithms in Wireless Sensor Networks. In: Oliva, D., Houssein, E.H., Hinojosa, S. (eds) Metaheuristics in Machine Learning: Theory and Applications. Studies in Computational Intelligence, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-030-70542-8_9

Download citation

Publish with us

Policies and ethics