Skip to main content

Context Modelling in Ambient Assisted Living: Trends and Lessons

  • Chapter
  • First Online:
Internet of Things

Abstract

The current Internet of Things (IoT) development involves ambient intelligence which ensures that IoT applications provide services that are sensitive, adaptive, autonomous, and personalized to the users’ needs. A key issue of this adaptivity is context modelling and reasoning. Multiple proposals in the literature have tackled this problem according to various techniques and perspectives. This chapter provides a review of context modelling approaches, with a focus on services offered in Ambient Assisted Living (AAL) systems for persons in need of care. We present the characteristics of contextual information, services offered by AAL systems, as well as context and reasoning models that have been used to implement them. A discussion highlights the trends emerging from the scientific literature to select the most appropriate model to implement AAL systems according to the collected data and the services provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.w3.org/TR/owl-time/

  2. 2.

    https://www.w3.org/TR/owl-time/

References

  1. Alirezaie, M., Renoux, J., Köckemann, U., et al. (2017). An ontology-based context-aware system for smart homes: E-care@home. Sensors, 17, 1586. https://doi.org/10.3390/s17071586.

    Article  Google Scholar 

  2. Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A survey on context-aware systems. International Journal of Ad Hoc and Ubiquitous Computing, 2, 263–277.

    Article  Google Scholar 

  3. Rashidi, P., & Mihailidis, A. (2013). A survey on ambient-assisted living tools for older adults. IEEE Journal of Biomedical and Health Informatics, 17, 579–590. https://doi.org/10.1109/JBHI.2012.2234129.

    Article  Google Scholar 

  4. Forkan, A., Khalil, I., & Tari, Z. (2014). CoCaMAAL: A cloud-oriented context-aware middleware in ambient assisted living. Future Generation Computer Systems, 35, 114–127. https://doi.org/10.1016/j.future.2013.07.009.

    Article  Google Scholar 

  5. Aritoni, O., & Negru, V. (2010). Sensors data-stream processing middleware based on multi-agent model. Scalable Computing: Practice and Experience, 11, 19–32. https://doi.org/10.12694/scpe.v11i1.636.

    Article  Google Scholar 

  6. Klimek, R. (2018). Exploration of human activities using message streaming brokers and automated logical reasoning for ambient-assisted services. IEEE Access, 6, 27127–27155. https://doi.org/10.1109/ACCESS.2018.2834532.

    Article  Google Scholar 

  7. Preuveneers, D., Berbers, Y., & Joosen, W. (2016). SAMURAI: A batch and streaming context architecture for large-scale intelligent applications and environments. Journal of Ambient Intelligence and Smart Environments, 8, 63–78. https://doi.org/10.3233/AIS-150357.

    Article  Google Scholar 

  8. Magableh, B., & Albeiruti, N. (2012). Detecting the onset of dementia using context-oriented architecture. In Proceedings - 6th international conference on next generation mobile applications, services, and technologies, NGMAST 2012 (pp. 24–30).

    Google Scholar 

  9. Dey, A. K., Abowd, G. D., & Salber, D. (2000). A context-based infrastructure for smart environments. In Managing interactions in smart environments (pp. 114–128). London: Springer.

    Chapter  Google Scholar 

  10. Bettini, C., Brdiczka, O., Henricksen, K., et al. (2010). A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing, 6, 161–180. https://doi.org/10.1016/j.pmcj.2009.06.002.

    Article  Google Scholar 

  11. El murabet, A., Abtoy, A., Touhafi, A., & Tahiri, A. (2018). Ambient assisted living system’s models and architectures: A survey of the state of the art. Journal of King Saud University - Computer and Information Sciences, 32, 1–10.

    Article  Google Scholar 

  12. Li, X., Eckert, M., Martinez, J. F., & Rubio, G. (2015). Context aware middleware architectures: Survey and challenges. Sensors (Switzerland), 15, 20570–20607. https://doi.org/10.3390/s150820570.

    Article  Google Scholar 

  13. Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware computing for the internet of things: A survey. IEEE Communication Surveys and Tutorials, 16, 414–454. https://doi.org/10.1109/SURV.2013.042313.00197.

    Article  Google Scholar 

  14. Alam, M. R., Reaz, M. B. I., & Ali, M. A. M. (2012). A review of smart homes - past, present, and future. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42, 1190–1203. https://doi.org/10.1109/TSMCC.2012.2189204.

    Article  Google Scholar 

  15. Camarinha-Matos, L. M., Ferrada, F., Oliveira, A. I., et al. (2014). Care services provision in ambient assisted living. IRBM, 35, 286–298. https://doi.org/10.1016/j.irbm.2014.08.001.

    Article  Google Scholar 

  16. Cook, D. J., Youngblood, M., Heierman, E. O., et al. (2003). MavHome: An agent-based smart home. In Proceedings of the 1st IEEE international conference on pervasive computing and communications, PerCom 2003 (pp. 521–524).

    Google Scholar 

  17. Chen, L., & Nugent, C. (2010). Situation aware cognitive assistance in smart homes. Journal of Mobile Multimedia, 6, 263–280.

    Google Scholar 

  18. De Brouwer, M., Ongenae, F., Bonte, P., & De Turck, F. (2018). Towards a cascading reasoning framework to support responsive ambient-intelligent healthcare interventions. Sensors (Switzerland), 18. https://doi.org/10.3390/s18103514.

  19. Wojciechowski, M. (2010). End user context modeling in ambient assisted living. International Journal of Advanced Pervasive and Ubiquitous Computing, 1, 61–80. https://doi.org/10.4018/japuc.2009090804.

    Article  Google Scholar 

  20. Mocholí, J. B., Sala, P., & Naranjo, J. C. (2010). Ontology for Modeling interaction in ambient assisted living environments. In XII Mediterranean conference on medical and biological engineering and computing 2010.

    Google Scholar 

  21. Ayari, N., Chibani, A., Amirat, Y., & Matson, E. (2016). A semantic approach for enhancing assistive services in ubiquitous robotics. Robotics and Autonomous Systems, 75, 17–27. https://doi.org/10.1016/j.robot.2014.10.022.

    Article  Google Scholar 

  22. Eldib, M., Deboeverie, F., Philips, W., & Aghajan, H. (2016). Behavior analysis for elderly care using a network of low-resolution visual sensors. Journal of Electronic Imaging, 25. https://doi.org/10.1117/1.jei.25.4.041003.

  23. Kenfack Ngankam, H., Pigot, H., Lorrain, D., et al. (2020). Context awareness architecture for ambient-assisted living applications: Case study of nighttime wandering. Journal of Rehabilitation and Assistive Technologies Engineering, 7. https://doi.org/10.1177/2055668319887864.

  24. Pinard, S., Bottari, C., Laliberté, C., et al. (2019). Design and usability evaluation of COOK, an assistive technology for meal preparation for persons with severe TBI. Disability and Rehabilitation. Assistive Technology, 1–15. https://doi.org/10.1080/17483107.2019.1696898.

  25. Riaño, D., Real, F., López-Vallverdú, J. A., et al. (2012). An ontology-based personalization of health-care knowledge to support clinical decisions for chronically ill patients. Journal of Biomedical Informatics, 45, 429–446. https://doi.org/10.1016/j.jbi.2011.12.008.

    Article  Google Scholar 

  26. Chen, R. C., Huang, Y. H., Bau, C. T., & Chen, S. M. (2012). A recommendation system based on domain ontology and SWRL for anti-diabetic drugs selection. Expert Systems with Applications, 39, 3995–4006. https://doi.org/10.1016/j.eswa.2011.09.061.

    Article  Google Scholar 

  27. Zhang, S., McCullagh, P., Nugent, C., et al. (2013). An ontological framework for activity monitoring and reminder reasoning in an assisted environment. Journal of Ambient Intelligence and Humanized Computing, 4, 157–168. https://doi.org/10.1007/s12652-011-0063-1.

    Article  Google Scholar 

  28. Jacquet, C., Mateos, M., Bretault, P., et al. (2012). An ambient assisted living framework supporting personalization based on ontologies. In In AMBIENT 2012, the second international conference on ambient computing, applications, services and technologies. IARIA.

    Google Scholar 

  29. Meditskos, G., Kontopoulos, E., Vrochidis, S., & Kompatsiaris, I. (2019). Converness: Ontology-driven conversational awareness and context understanding in multimodal dialogue systems. In Expert Systems. Hoboken: Blackwell Publishing Ltd.

    Google Scholar 

  30. Zhou, F., Jiao, J., Chen, S., & Zhang, D. (2011). A case-driven ambient intelligence system for elderly in-home assistance applications. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 41, 179–189. https://doi.org/10.1109/TSMCC.2010.2052456.

    Article  Google Scholar 

  31. Skillen, K.-L., Chen, L., Nugent, C. D., et al. (2014). Ontological user modelling and semantic rule-based reasoning for personalisation of help-on-demand services in pervasive environments. Future Generation Computer Systems, 34, 97–109. https://doi.org/10.1016/J.FUTURE.2013.10.027.

    Article  Google Scholar 

  32. Costa, N., Domingues, P., Fdez-Riverola, F., & Pereira, A. (2014). A mobile virtual butler to bridge the gap between users and ambient assisted living: A smart home case study. Sensors (Switzerland), 14, 14302–14329. https://doi.org/10.3390/s140814302.

    Article  Google Scholar 

  33. Adjali, O., Hina, M. D., Dourlens, S., & Ramdane-Cherif, A. (2015). Multimodal fusion, fission and virtual reality simulation for an ambient robotic intelligence. In Procedia computer science (pp. 218–225). Amsterdam: Elsevier B.V.

    Google Scholar 

  34. Yuan, B., & Herbert, J. (2014). Context-aware hybrid reasoning framework for pervasive healthcare. Personal and Ubiquitous Computing, 18, 865–881. https://doi.org/10.1007/s00779-013-0696-5.

    Article  Google Scholar 

  35. Olivares, M., Giroux, S., De Loor, P., et al. (2016). An ontology model for a context-aware preventive assistance system: Reducing exposition of individuals with traumatic brain injury to dangerous situations during meal preparation. In 2nd IET international conference on Technologies for Active and Assisted Living (TechAAL 2016). Institution of Engineering and Technology. pp 3 (8.)-3 (8.).

    Google Scholar 

  36. Chahuara, P., Portet, F., & Vacher, M. (2017). Context-aware decision making under uncertainty for voice-based control of smart home. Expert Systems with Applications, 75, 63–79. https://doi.org/10.1016/j.eswa.2017.01.014.

    Article  Google Scholar 

  37. Humayun Kabir, M., Robiul Hoque, M., & Yang, S. H. (2015). Development of a smart home context-aware application: A machine learning based approach. International Journal of Smart Home, 9, 217–226. https://doi.org/10.14257/ijsh.2015.9.1.23.

    Article  Google Scholar 

  38. Ghasemi, V., & Pouyan, A. A. (2017). Modeling users’ data traces in multi-resident ambient assisted living environments. International Journal of Computational Intelligence Systems, 10, 1289. https://doi.org/10.2991/ijcis.10.1.88.

    Article  Google Scholar 

  39. Padilla-López, J. R., Chaaraoui, A. A., Gu, F., & Flórez-Revuelta, F. (2015). Visual privacy by context: Proposal and evaluation of a level-based visualisation scheme. Sensors (Switzerland), 15, 12959–12982. https://doi.org/10.3390/s150612959.

    Article  Google Scholar 

  40. Andreadis, S., Stavropoulos, T. G., Meditskos, G., & Kompatsiaris, I. (2016). Dem@home: Ambient intelligence for clinical support of people living with dementia. In CEUR workshop proceedings.

    Google Scholar 

  41. Bergeron, F., Giroux, S., Bouchard, K., & Gaboury, S. (2017). RFID based activities of daily living recognition. In 2017 IEEE SmartWorld Ubiquitous Intelligence and Computing, Advanced and Trusted Computed, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation, SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017 (pp. 1–5). IEEE.

    Google Scholar 

  42. Zgheib, R., De, N. A., Villani, M. L., et al. (2017). A flexible architecture for cognitive sensing of activities in ambient assisted living. In Proceedings – 2017 IEEE 26th international conference on enabling technologies: Infrastructure for collaborative enterprises, WETICE 2017 (pp. 284–289). Institute of Electrical and Electronics Engineers.

    Google Scholar 

  43. Noor, M. H. M., Salcic, Z., & Wang, K. I. K. (2018). Ontology-based sensor fusion activity recognition. Journal of Ambient Intelligence and Humanized Computing, 1–15. https://doi.org/10.1007/s12652-017-0668-0.

  44. Bennasar, M., Price, B. A., Stuart, A., et al. (2019). Knowledge-based architecture for recognising activities of older people. In Procedia computer science (pp. 590–599). Amsterdam: Elsevier B.V.

    Google Scholar 

  45. Tan, Z., Xu, L., Zhong, W., et al. (2018). Online activity recognition and daily habit modeling for solitary elderly through indoor position-based stigmergy. Engineering Applications of Artificial Intelligence, 76, 214–225. https://doi.org/10.1016/j.engappai.2018.08.009.

    Article  Google Scholar 

  46. Forkan, A. R. M., Khalil, I., Tari, Z., et al. (2015). A context-aware approach for long-term behavioural change detection and abnormality prediction in ambient assisted living. Pattern Recognition, 48, 628–641. https://doi.org/10.1016/j.patcog.2014.07.007.

    Article  Google Scholar 

  47. Bergeron, F., Bouchard, K., Gaboury, S., & Giroux, S. (2018). Tracking objects within a smart home. Expert Systems with Applications, 113, 428–442. https://doi.org/10.1016/j.eswa.2018.07.009.

    Article  Google Scholar 

  48. Hervás, R., Bravo, J., & Fontecha, J. (2014). An assistive navigation system based on augmented reality and context awareness for people with mild cognitive impairments. IEEE Journal of Biomedical and Health Informatics, 18, 368–374. https://doi.org/10.1109/JBHI.2013.2266480.

    Article  Google Scholar 

  49. Bhatt, M., Suchan, J., & Schultz, C. (2013). Cognitive interpretation of everyday activities - toward perceptual narrative based visuo-spatial scene interpretation. In OpenAccess series in informatics (pp. 24–29).

    Google Scholar 

  50. Das, S. K., Cook, J., Bhattacharya, A., et al. (2002). The role of prediction algorithms in the MavHome smart home architecture. IEEE Wireless Communications, 9, 77–84. https://doi.org/10.1109/MWC.2002.1160085.

    Article  Google Scholar 

  51. Psyché, V., Daniel, B., & Bourdeau, J. (2019). Adaptive learning spaces with context-awareness. In A. Coy, Y. Hayashi, & M. Chang (Eds.), Intelligent tutoring systems (pp. 7–13). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  52. Bazire Maryand Brézillon, P. (2005). Understanding context before using it. In D. Anindand, B. Kokinov, D. Leake, & R. Turne (Eds.), Modeling and using context (pp. 29–40). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  53. Ryan, N. S., Pascoe, J., & Morse, D. R. (1998). Enhanced reality fieldwork: the context-aware archaeological assistant. in Computer Applications in Archaeology, Oxford:Tempus Reparatum.

    Google Scholar 

  54. Forkan, A. R. M., Khalil, I., Ibaida, A., & Tari, Z. (2015). BDCaM: Big data for context-aware monitoring—A personalized knowledge discovery framework for assisted healthcare. IEEE Transactions on Cloud Computing, 5, 628–641. https://doi.org/10.1109/tcc.2015.2440269.

    Article  Google Scholar 

  55. Zerawa, S.-A., Pollhammer, K., & Turek, T. (2011). Simplifying routine task using contactless smartcards. In IEEE AFRICON conference.

    Google Scholar 

  56. López-Cózar, R., & Callejas, Z. (2010). Multimodal dialogue for ambient intelligence and smart environments. In Handbook of ambient intelligence and smart environments (pp. 559–579). New York: Springer.

    Chapter  Google Scholar 

  57. Zdravevski, E., Lameski, P., Trajkovik, V., et al. (2017). Improving activity recognition accuracy in ambient-assisted living systems by automated feature engineering. IEEE Access, 5, 5262–5280. https://doi.org/10.1109/ACCESS.2017.2684913.

    Article  Google Scholar 

  58. Stucki, G. (2005). International classification of functioning, disability, and health (ICF). American Journal of Physical Medicine & Rehabilitation, 84, 733–740. https://doi.org/10.1097/01.phm.0000179521.70639.83.

    Article  Google Scholar 

  59. Stavropoulos, T. G., Kontopoulos, E., Bassiliades, N., et al. (2015). Rule-based approaches for energy savings in an ambient intelligence environment. Pervasive and Mobile Computing, 19, 1–23. https://doi.org/10.1016/j.pmcj.2014.05.001.

    Article  Google Scholar 

  60. Okeyo, G., Chen, L., Wang, H., & Sterritt, R. (2014). Dynamic sensor data segmentation for real-time knowledge-driven activity recognition. Pervasive and Mobile Computing, 10, 155–172. https://doi.org/10.1016/j.pmcj.2012.11.004.

    Article  Google Scholar 

  61. Velik, R. (2014). A brain-inspired multimodal data mining approach for human activity recognition in elderly homes. Journal of Ambient Intelligence and Smart Environments, 6, 447–468. https://doi.org/10.3233/AIS-140266.

    Article  Google Scholar 

  62. Martínez-Pérez, F. E., González-Fraga, J. Á., Cuevas-Tello, J. C., & Rodríguez, M. D. (2012). Activity inference for ambient intelligence through handling artifacts in a healthcare environment. Sensors, 12, 1072–1099. https://doi.org/10.3390/s120101072.

    Article  Google Scholar 

  63. El Amine Elforaici, M., Chaaraoui, I., Bouachir, W., et al. (2018). Posture recognition using an rgb-d camera: Exploring 3d body modeling and deep learning approaches. In 2018 IEEE life sciences conference, LSC 2018 (pp. 69–72).

    Google Scholar 

  64. Manzi, A., Dario, P., & Cavallo, F. (2017). A human activity recognition system based on dynamic clustering of skeleton data. Sensors (Switzerland), 17. https://doi.org/10.3390/s17051100.

  65. Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM, 26, 832–843. https://doi.org/10.1145/182.358434.

    Article  Google Scholar 

  66. Hobbs, J. R., & Pan, F. (2017). Time ontology in OWL: Candidate recommendation. In W3C Consort. https://www.w3.org/TR/owl-time/.

  67. Díaz-Rodríguez, N., Cadahía, O. L., Cuéllar, M. P., et al. (2014). Handling real-world context awareness, uncertainty and vagueness in real-time human activity tracking and recognition with a fuzzy ontology-based hybrid method. Sensors (Switzerland), 14, 18131–18171. https://doi.org/10.3390/s141018131.

    Article  Google Scholar 

  68. Chikhaoui, B., Wang, S., & Pigot, H. (2011). A frequent pattern mining approach for ADLs recognition in smart environments. In Proceedings of the 25th international conference on advanced information networking and applications (pp. 248–255).

    Google Scholar 

  69. Abdulrazak, B., Chikhaoui, B., Gouin-Vallerand, C., & Fraikin, B. (2010). A standard ontology for smart spaces. IJWGS, 6, 244–268.

    Article  Google Scholar 

  70. Gouin-Vallerand, C., Abdulrazak, B., Giroux, S., & Dey, A. K. (2013). A context-aware service provision system for smart environments based on the user interaction modalities. Journal of Ambient Intelligence and Smart Environments, 5, 47–64. https://doi.org/10.3233/AIS-120190.

    Article  Google Scholar 

  71. Allègre, W., Burger, T., Antoine, J. Y., et al. (2013). A non-intrusive context-aware system for ambient assisted living in smart home. Health and Technology, 3, 129–138.

    Article  Google Scholar 

  72. Lotfi, A., Langensiepen, C., Mahmoud, S. M., & Akhlaghinia, M. J. (2012). Smart homes for the elderly dementia sufferers: Identification and prediction of abnormal behaviour. Journal of Ambient Intelligence and Humanized Computing, 3, 205–218. https://doi.org/10.1007/s12652-010-0043-x.

    Article  Google Scholar 

  73. Castillejo, E., Almeida, A., López-De-Ipiña, D., & Chen, L. (2014). Modeling users, context and devices for ambient assisted living environments. Sensors (Switzerland), 14, 5354–5391.

    Article  Google Scholar 

  74. Rodríguez, N. D., Cuéllar, M. P., Lilius, J., & Calvo-Flores, M. D. (2014). A survey on ontologies for human behavior recognition. ACM Computing Surveys, 46, 1–33.

    Article  Google Scholar 

  75. Chen, L., Nugent, C. D., & Wang, H. (2012). A knowledge-driven approach to activity recognition in smart homes. IEEE Transactions on Knowledge and Data Engineering, 24, 961–974. https://doi.org/10.1109/TKDE.2011.51.

    Article  Google Scholar 

  76. Cook, D. J., Youngblood, M., Heierman, E. O., et al. (2003). MavHome: An agent-based smart home. In Proceedings of the first IEEE international conference on pervasive computing and communications, 2003. (PerCom 2003) (pp. 521–524). Fort Worth, TX: IEEE Comput. Soc.

    Chapter  Google Scholar 

  77. O’Connor, M. J., Hernandez, G., & Das, A. (2011). A rule-based method for specifying and querying temporal abstractions. In M. Peleg, N. Lavrač, & C. Combi (Eds.), Artificial intelligence in medicine (pp. 255–259). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  78. Weichert, F., Mertens, C., Walczak, L., et al. (2013). A novel approach for connecting temporal-ontologies with blood flow simulations. Journal of Biomedical Informatics, 46, 470–479. https://doi.org/10.1016/j.jbi.2013.03.004.

    Article  Google Scholar 

  79. Lotte, F., Bougrain, L., Cichocki, A., et al. (2018). A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. Journal of Neural Engineering, 15, 031005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Pigot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tekemetieu, A.A. et al. (2021). Context Modelling in Ambient Assisted Living: Trends and Lessons. In: García Márquez, F.P., Lev, B. (eds) Internet of Things. International Series in Operations Research & Management Science, vol 305. Springer, Cham. https://doi.org/10.1007/978-3-030-70478-0_10

Download citation

Publish with us

Policies and ethics